Publikation:

Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2020

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Nanostrukturlabor, Electron Microscopy Centre

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Microporous and Mesoporous Materials. Elsevier. 2020, 294, 109879. ISSN 1387-1811. eISSN 1873-3093. Verfügbar unter: doi: 10.1016/j.micromeso.2019.109879

Zusammenfassung

The conversion of waste into valuable products is most appealing in the case of CO2, a molecule which is produced in mass by our society and industries. Because its atmospheric concentration correlates to climate change and the green-house effect, major efforts are on the way to reduce the emission of CO2. One promising strategy is the separation of CO2 from the gas-phase (e.g. flue gases) by solid-adsorbents containing amine moieties. The synthesis of tailor-made adsorbents with changing surface properties remains a challenge. This work presents a click chemistry approach that enables the easy modification of organosilica materials with functional groups that can be used as model systems to study the influence of surface chemistry on CO2 adsorption. As an example, the modification of the materials with primary amines is discussed in detail but furthermore the approach offers the possibility to tailor the surface properties using any desired functional group. The increased affinity of the used copper catalyst introduced some difficulties but we were able to remove all remains of copper. With this approach, we were able to synthesize materials with different degrees of functionalization up to 80%. This approach for the development of new carbon capture model systems offers high functionalization combined with the flexibility of a post-functionalization approach. Thus, surface chemistry can be tailored to study the influence of surface chemistry on CO2 adsorption. As an example for the model character of our materials, we could show that the heat of adsorption can be tuned by systematically varying the degree of amine functionalization.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
540 Chemie

Schlagwörter

Amine-functionalized materials; Organosilica; Aerogels; Functional gradients; Carbon capture model systems; CO2 adsorption; Click chemistry

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690KLINKENBERG, Nele, Alexander KLAIBER, Magdalena MÜLLER, Sebastian POLARZ, 2020. Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO2 adsorption features in amine-containing organosilica. In: Microporous and Mesoporous Materials. Elsevier. 2020, 294, 109879. ISSN 1387-1811. eISSN 1873-3093. Verfügbar unter: doi: 10.1016/j.micromeso.2019.109879
BibTex
@article{Klinkenberg2020-03Versa-47530,
  year={2020},
  doi={10.1016/j.micromeso.2019.109879},
  title={Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO<sub>2</sub> adsorption features in amine-containing organosilica},
  volume={294},
  issn={1387-1811},
  journal={Microporous and Mesoporous Materials},
  author={Klinkenberg, Nele and Klaiber, Alexander and Müller, Magdalena and Polarz, Sebastian},
  note={Article Number: 109879}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/47530">
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-03</dcterms:issued>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T10:48:09Z</dcterms:available>
    <dc:contributor>Müller, Magdalena</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:creator>Müller, Magdalena</dc:creator>
    <dc:contributor>Klinkenberg, Nele</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/>
    <dc:contributor>Klaiber, Alexander</dc:contributor>
    <dcterms:abstract xml:lang="eng">The conversion of waste into valuable products is most appealing in the case of CO&lt;sub&gt;2&lt;/sub&gt;, a molecule which is produced in mass by our society and industries. Because its atmospheric concentration correlates to climate change and the green-house effect, major efforts are on the way to reduce the emission of CO&lt;sub&gt;2&lt;/sub&gt;. One promising strategy is the separation of CO&lt;sub&gt;2&lt;/sub&gt; from the gas-phase (e.g. flue gases) by solid-adsorbents containing amine moieties. The synthesis of tailor-made adsorbents with changing surface properties remains a challenge. This work presents a click chemistry approach that enables the easy modification of organosilica materials with functional groups that can be used as model systems to study the influence of surface chemistry on CO&lt;sub&gt;2&lt;/sub&gt; adsorption. As an example, the modification of the materials with primary amines is discussed in detail but furthermore the approach offers the possibility to tailor the surface properties using any desired functional group. The increased affinity of the used copper catalyst introduced some difficulties but we were able to remove all remains of copper. With this approach, we were able to synthesize materials with different degrees of functionalization up to 80%. This approach for the development of new carbon capture model systems offers high functionalization combined with the flexibility of a post-functionalization approach. Thus, surface chemistry can be tailored to study the influence of surface chemistry on CO&lt;sub&gt;2&lt;/sub&gt; adsorption. As an example for the model character of our materials, we could show that the heat of adsorption can be tuned by systematically varying the degree of amine functionalization.</dcterms:abstract>
    <dcterms:title>Versatile surface modification of aerogels by click chemistry as an approach to generate model systems for CO&lt;sub&gt;2&lt;/sub&gt; adsorption features in amine-containing organosilica</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47530"/>
    <dc:creator>Polarz, Sebastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-11-18T10:48:09Z</dc:date>
    <dc:creator>Klaiber, Alexander</dc:creator>
    <dc:contributor>Polarz, Sebastian</dc:contributor>
    <dc:creator>Klinkenberg, Nele</dc:creator>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen