Stable Visual Summaries for Trajectory Collections

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2021
Autor:innen
Wulms, Jules
Meulemans, Wouter
Verbeek, Kevin
Speckmann, Bettina
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Forschungsförderung
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings : 2021 IEEE 14th Pacific Visualization Symposium : PacificVis 2021. Piscataway, NJ: IEEE, 2021, pp. 61-70. ISSN 2165-8765. eISSN 2165-8773. ISBN 978-1-66543-931-2. Available under: doi: 10.1109/PacificVis52677.2021.00016
Zusammenfassung

The availability of devices that track moving objects has led to an explosive growth in trajectory data. When exploring the resulting large trajectory collections, visual summaries are a useful tool to identify time intervals of interest. A typical approach is to represent the spatial positions of the tracked objects at each time step via a one-dimensional ordering; visualizations of such orderings can then be placed in temporal order along a time line. There are two main criteria to assess the quality of the resulting visual summary: spatial quality - how well does the ordering capture the structure of the data at each time step, and stability - how coherent are the orderings over consecutive time steps or temporal ranges?In this paper we introduce a new Stable Principal Component (SPC) method to compute such orderings, which is explicitly parameterized for stability, allowing a trade-off between the spatial quality and stability. We conduct extensive computational experiments that quantitatively compare the orderings produced by ours and other stable dimensionality-reduction methods to various state-of-the-art approaches using a set of well-established quality metrics that capture spatial quality and stability. We conclude that stable dimensionality reduction outperforms existing methods on stability, without sacrificing spatial quality or efficiency; in particular, our new SPC method does so at a fraction of the computational costs.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
2021 IEEE 14th Pacific Visualization Symposium : PacificVis 2021 (online), 19. Apr. 2021 - 22. Apr. 2021
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WULMS, Jules, Juri F. BUCHMÜLLER, Wouter MEULEMANS, Kevin VERBEEK, Bettina SPECKMANN, 2021. Stable Visual Summaries for Trajectory Collections. 2021 IEEE 14th Pacific Visualization Symposium : PacificVis 2021 (online), 19. Apr. 2021 - 22. Apr. 2021. In: Proceedings : 2021 IEEE 14th Pacific Visualization Symposium : PacificVis 2021. Piscataway, NJ: IEEE, 2021, pp. 61-70. ISSN 2165-8765. eISSN 2165-8773. ISBN 978-1-66543-931-2. Available under: doi: 10.1109/PacificVis52677.2021.00016
BibTex
@inproceedings{Wulms2021Stabl-54529,
  year={2021},
  doi={10.1109/PacificVis52677.2021.00016},
  title={Stable Visual Summaries for Trajectory Collections},
  isbn={978-1-66543-931-2},
  issn={2165-8765},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={Proceedings : 2021 IEEE 14th Pacific Visualization Symposium : PacificVis 2021},
  pages={61--70},
  author={Wulms, Jules and Buchmüller, Juri F. and Meulemans, Wouter and Verbeek, Kevin and Speckmann, Bettina}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54529">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Speckmann, Bettina</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-10T11:57:45Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Wulms, Jules</dc:creator>
    <dcterms:title>Stable Visual Summaries for Trajectory Collections</dcterms:title>
    <dcterms:abstract xml:lang="eng">The availability of devices that track moving objects has led to an explosive growth in trajectory data. When exploring the resulting large trajectory collections, visual summaries are a useful tool to identify time intervals of interest. A typical approach is to represent the spatial positions of the tracked objects at each time step via a one-dimensional ordering; visualizations of such orderings can then be placed in temporal order along a time line. There are two main criteria to assess the quality of the resulting visual summary: spatial quality - how well does the ordering capture the structure of the data at each time step, and stability - how coherent are the orderings over consecutive time steps or temporal ranges?In this paper we introduce a new Stable Principal Component (SPC) method to compute such orderings, which is explicitly parameterized for stability, allowing a trade-off between the spatial quality and stability. We conduct extensive computational experiments that quantitatively compare the orderings produced by ours and other stable dimensionality-reduction methods to various state-of-the-art approaches using a set of well-established quality metrics that capture spatial quality and stability. We conclude that stable dimensionality reduction outperforms existing methods on stability, without sacrificing spatial quality or efficiency; in particular, our new SPC method does so at a fraction of the computational costs.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-08-10T11:57:45Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54529"/>
    <dc:creator>Meulemans, Wouter</dc:creator>
    <dc:contributor>Meulemans, Wouter</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Verbeek, Kevin</dc:contributor>
    <dc:creator>Verbeek, Kevin</dc:creator>
    <dc:contributor>Wulms, Jules</dc:contributor>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Speckmann, Bettina</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet