Publikation:

PSE v1.0 : The First Open Access Corpus of Public Service Encounters

Lade...
Vorschaubild

Dateien

Espinoza_2-1wd6ebk4gnel20.pdf
Espinoza_2-1wd6ebk4gnel20.pdfGröße: 195.67 KBDownloads: 37

Datum

2024

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 390681379

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CALZOLARI, Nicoletta, Hrsg., Min-Yen KAN, Hrsg., Veronique HOSTE, Hrsg. und andere. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Stroudsburg, Pennsylvania: Association for Computational Linguistics (ACL), 2024, S. 13315-13320. ISBN 978-1-7138-9760-6

Zusammenfassung

Face-to-face interactions between representatives of the state and citizens are a key intercept in public service delivery, for instance when providing social benefits to vulnerable groups. Despite the relevance of these encounters for the individual, but also for society at large, there is a significant research gap in the systematic empirical study of the communication taking place. This is mainly due to the high institutional and data protection barriers for collecting data in a very sensitive and private setting in which citizens request support from the state. In this paper, we describe the procedure of compiling the first open access dataset of transcribed recordings of so-called Public Service Encounters in Germany, i.e., meetings between state officials and citizens in which there is direct communication in order to allocate state services. This dataset sets a new research directive in the social sciences, because it allows the community to open up the black box of direct state-citizen interaction. With data of this kind it becomes possible to directly and systematically investigate bias, bureaucratic discrimination and other power-driven dynamics in the actual communication and ideally propose guidelines as to alleviate these issues.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Public Service Encounters, Transcripts, Computational Social Science

Konferenz

LREC-COLING 2024 : The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, 20. Mai 2024 - 25. Mai 2024, Torino, Italia
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Public Service Encounters (PSE) Corpus v1.0
(2024) Eckhard, Steffen; Espinoza, Ingrid; Frenzel, Steffen; Friedrich, Laurin; Hautli-Janisz, Annette; Siskou, Wassiliki

Zitieren

ISO 690ESPINOZA, Ingrid, Steffen FRENZEL, Laurin FRIEDRICH, Wassiliki SISKOU, Steffen ECKHARD, Annette HAUTLI-JANISZ, 2024. PSE v1.0 : The First Open Access Corpus of Public Service Encounters. LREC-COLING 2024 : The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation. Torino, Italia, 20. Mai 2024 - 25. Mai 2024. In: CALZOLARI, Nicoletta, Hrsg., Min-Yen KAN, Hrsg., Veronique HOSTE, Hrsg. und andere. Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024). Stroudsburg, Pennsylvania: Association for Computational Linguistics (ACL), 2024, S. 13315-13320. ISBN 978-1-7138-9760-6
BibTex
@inproceedings{Espinoza2024First-73924,
  title={PSE v1.0 : The First Open Access Corpus of Public Service Encounters},
  url={https://aclanthology.org/2024.lrec-main.1165/},
  year={2024},
  isbn={978-1-7138-9760-6},
  address={Stroudsburg, Pennsylvania},
  publisher={Association for Computational Linguistics (ACL)},
  booktitle={Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)},
  pages={13315--13320},
  editor={Calzolari, Nicoletta and Kan, Min-Yen and Hoste, Veronique},
  author={Espinoza, Ingrid and Frenzel, Steffen and Friedrich, Laurin and Siskou, Wassiliki and Eckhard, Steffen and Hautli-Janisz, Annette}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73924">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract>Face-to-face interactions between representatives of the state and citizens are a key intercept in public service delivery, for instance when providing social benefits to vulnerable groups. Despite the relevance of these encounters for the individual, but also for society at large, there is a significant research gap in the systematic empirical study of the communication taking place. This is mainly due to the high institutional and data protection barriers for collecting data in a very sensitive and private setting in which citizens request support from the state. In this paper, we describe the procedure of compiling the first open access dataset of transcribed recordings of so-called Public Service Encounters in Germany, i.e., meetings between state officials and citizens in which there is direct communication in order to allocate state services. This dataset sets a new research directive in the social sciences, because it allows the community to open up the black box of direct state-citizen interaction. With data of this kind it becomes possible to directly and systematically investigate bias, bureaucratic discrimination and other power-driven dynamics in the actual communication and ideally propose guidelines as to alleviate these issues.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73924"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dc:creator>Espinoza, Ingrid</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73924/4/Espinoza_2-1wd6ebk4gnel20.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Frenzel, Steffen</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-11T11:03:21Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-07-11T11:03:21Z</dc:date>
    <dc:creator>Frenzel, Steffen</dc:creator>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Friedrich, Laurin</dc:creator>
    <dc:contributor>Friedrich, Laurin</dc:contributor>
    <dcterms:title>PSE v1.0 : The First Open Access Corpus of Public Service Encounters</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:contributor>Hautli-Janisz, Annette</dc:contributor>
    <dc:contributor>Siskou, Wassiliki</dc:contributor>
    <dc:contributor>Eckhard, Steffen</dc:contributor>
    <dc:creator>Siskou, Wassiliki</dc:creator>
    <dc:contributor>Espinoza, Ingrid</dc:contributor>
    <dc:creator>Eckhard, Steffen</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:creator>Hautli-Janisz, Annette</dc:creator>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73924/4/Espinoza_2-1wd6ebk4gnel20.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2025-07-11

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen