Publikation: On the Convergence of a Greedy Algorithm for Operator Reconstruction
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In their publication "A greedy algorithm for the identification of quantum systems" from 2009, Yvon Maday and Julien Salomon introduce an algorithm for the reconstruction of operators in the context of quantum systems. This algorithm shows good results in the numerical application. However, no convergence theory has been developed so far. In this work we investigate the algorithm in the setting of a linear ordinary differential equation, present problematic cases and establish assumptions under which convergence is guaranteed. We also develop working improvements to the algorithm, demonstrate their performance in numerical examples and discuss numerical instabilities. Hereafter, we give a detailed description of the algorithm in its original form and setting. In this context we introduce monotonic schemes as an efficient method to solve optimal control problems for quantum systems. Finally, we apply one of the improvements from the linear setting and show, with the aid of numerical experiments, that it also has a positive effect on the algorithm’s performance for the solution of reconstruction problems governed by quantum systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BUCHWALD, Simon, 2020. On the Convergence of a Greedy Algorithm for Operator Reconstruction [Master thesis]. Konstanz: Universität KonstanzBibTex
@mastersthesis{Buchwald2020Conve-51343, year={2020}, title={On the Convergence of a Greedy Algorithm for Operator Reconstruction}, address={Konstanz}, school={Universität Konstanz}, author={Buchwald, Simon} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51343"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Buchwald, Simon</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:issued>2020</dcterms:issued> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51343/3/Buchwald_2-1s1m95ctbt68z8.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-14T07:13:53Z</dc:date> <dcterms:title>On the Convergence of a Greedy Algorithm for Operator Reconstruction</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51343"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51343/3/Buchwald_2-1s1m95ctbt68z8.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-10-14T07:13:53Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:abstract xml:lang="eng">In their publication "A greedy algorithm for the identification of quantum systems" from 2009, Yvon Maday and Julien Salomon introduce an algorithm for the reconstruction of operators in the context of quantum systems. This algorithm shows good results in the numerical application. However, no convergence theory has been developed so far. In this work we investigate the algorithm in the setting of a linear ordinary differential equation, present problematic cases and establish assumptions under which convergence is guaranteed. We also develop working improvements to the algorithm, demonstrate their performance in numerical examples and discuss numerical instabilities. Hereafter, we give a detailed description of the algorithm in its original form and setting. In this context we introduce monotonic schemes as an efficient method to solve optimal control problems for quantum systems. Finally, we apply one of the improvements from the linear setting and show, with the aid of numerical experiments, that it also has a positive effect on the algorithm’s performance for the solution of reconstruction problems governed by quantum systems.</dcterms:abstract> <dc:contributor>Buchwald, Simon</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>