Publikation:

Assessing the frontier : Active learning, model accuracy, and multi-objective candidate discovery and optimization

Lade...
Vorschaubild

Dateien

Rosario_2-1rkaqygcxvcal5.pdf
Rosario_2-1rkaqygcxvcal5.pdfGröße: 3.05 MBDownloads: 456

Datum

2020

Autor:innen

Del Rosario, Zachary
Kim, Yoolhee
Antono, Erin
Ling, Julia

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Journal of Chemical Physics. American Institute of Physics (AIP). 2020, 153(2), 024112. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/5.0006124

Zusammenfassung

Discovering novel chemicals and materials can be greatly accelerated by iterative machine learning-informed proposal of candidates-active learning. However, standard global error metrics for model quality are not predictive of discovery performance and can be misleading. We introduce the notion of Pareto shell error to help judge the suitability of a model for proposing candidates. Furthermore, through synthetic cases, an experimental thermoelectric dataset and a computational organic molecule dataset, we probe the relation between acquisition function fidelity and active learning performance. Results suggest novel diagnostic tools, as well as new insights for the acquisition function design.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690DEL ROSARIO, Zachary, Matthias RUPP, Yoolhee KIM, Erin ANTONO, Julia LING, 2020. Assessing the frontier : Active learning, model accuracy, and multi-objective candidate discovery and optimization. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2020, 153(2), 024112. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/5.0006124
BibTex
@article{DelRosario2020-07-14Asses-52563,
  year={2020},
  doi={10.1063/5.0006124},
  title={Assessing the frontier : Active learning, model accuracy, and multi-objective candidate discovery and optimization},
  number={2},
  volume={153},
  issn={0021-9606},
  journal={The Journal of Chemical Physics},
  author={Del Rosario, Zachary and Rupp, Matthias and Kim, Yoolhee and Antono, Erin and Ling, Julia},
  note={Article Number: 024112}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52563">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52563/1/Rosario_2-1rkaqygcxvcal5.pdf"/>
    <dc:contributor>Ling, Julia</dc:contributor>
    <dcterms:abstract xml:lang="eng">Discovering novel chemicals and materials can be greatly accelerated by iterative machine learning-informed proposal of candidates-active learning. However, standard global error metrics for model quality are not predictive of discovery performance and can be misleading. We introduce the notion of Pareto shell error to help judge the suitability of a model for proposing candidates. Furthermore, through synthetic cases, an experimental thermoelectric dataset and a computational organic molecule dataset, we probe the relation between acquisition function fidelity and active learning performance. Results suggest novel diagnostic tools, as well as new insights for the acquisition function design.</dcterms:abstract>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Rupp, Matthias</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52563/1/Rosario_2-1rkaqygcxvcal5.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-26T10:11:09Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52563"/>
    <dc:creator>Antono, Erin</dc:creator>
    <dc:creator>Rupp, Matthias</dc:creator>
    <dcterms:issued>2020-07-14</dcterms:issued>
    <dcterms:title>Assessing the frontier : Active learning, model accuracy, and multi-objective candidate discovery and optimization</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-26T10:11:09Z</dc:date>
    <dc:contributor>Antono, Erin</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Del Rosario, Zachary</dc:contributor>
    <dc:creator>Del Rosario, Zachary</dc:creator>
    <dc:creator>Ling, Julia</dc:creator>
    <dc:creator>Kim, Yoolhee</dc:creator>
    <dc:contributor>Kim, Yoolhee</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen