Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BEHRISCH, Michael, Lin SHAO, Bum Chul KWON, Tobias SCHRECK, Ivan SIPIRAN, Daniel A. KEIM, 2014. Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix. Informatik 2014 - Big Data : Komplexität meistern. Stuttgart, 22. Sept. 2014 - 26. Sept. 2014. In: GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany. 2014BibTex
@inproceedings{Behrisch2014Quali-30222, year={2014}, title={Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix}, booktitle={GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany}, author={Behrisch, Michael and Shao, Lin and Kwon, Bum Chul and Schreck, Tobias and Sipiran, Ivan and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30222"> <dc:creator>Kwon, Bum Chul</dc:creator> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:contributor>Shao, Lin</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Sipiran, Ivan</dc:creator> <dc:contributor>Behrisch, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dcterms:available> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Kwon, Bum Chul</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:abstract xml:lang="eng">Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.</dcterms:abstract> <dc:creator>Behrisch, Michael</dc:creator> <dcterms:title>Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30222"/> <dc:creator>Shao, Lin</dc:creator> <dc:contributor>Sipiran, Ivan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Schreck, Tobias</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>