Publikation:

Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2014

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany. 2014

Zusammenfassung

Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Informatik 2014 - Big Data : Komplexität meistern, 22. Sept. 2014 - 26. Sept. 2014, Stuttgart
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BEHRISCH, Michael, Lin SHAO, Bum Chul KWON, Tobias SCHRECK, Ivan SIPIRAN, Daniel A. KEIM, 2014. Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix. Informatik 2014 - Big Data : Komplexität meistern. Stuttgart, 22. Sept. 2014 - 26. Sept. 2014. In: GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany. 2014
BibTex
@inproceedings{Behrisch2014Quali-30222,
  year={2014},
  title={Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix},
  booktitle={GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany},
  author={Behrisch, Michael and Shao, Lin and Kwon, Bum Chul and Schreck, Tobias and Sipiran, Ivan and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30222">
    <dc:creator>Kwon, Bum Chul</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Sipiran, Ivan</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Kwon, Bum Chul</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.</dcterms:abstract>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dcterms:title>Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30222"/>
    <dc:creator>Shao, Lin</dc:creator>
    <dc:contributor>Sipiran, Ivan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen