Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2014
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany. 2014
Zusammenfassung

Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Informatik 2014 - Big Data : Komplexität meistern, 22. Sept. 2014 - 26. Sept. 2014, Stuttgart
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BEHRISCH, Michael, Lin SHAO, Bum Chul KWON, Tobias SCHRECK, Ivan SIPIRAN, Daniel A. KEIM, 2014. Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix. Informatik 2014 - Big Data : Komplexität meistern. Stuttgart, 22. Sept. 2014 - 26. Sept. 2014. In: GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany. 2014
BibTex
@inproceedings{Behrisch2014Quali-30222,
  year={2014},
  title={Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix},
  booktitle={GI Workshop Big Data Visual Computing – Quantitative Perspectives for Visual Computing, September 22, 2014, Stuttgart, Germany},
  author={Behrisch, Michael and Shao, Lin and Kwon, Bum Chul and Schreck, Tobias and Sipiran, Ivan and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/30222">
    <dc:creator>Kwon, Bum Chul</dc:creator>
    <dc:contributor>Schreck, Tobias</dc:contributor>
    <dc:contributor>Shao, Lin</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Sipiran, Ivan</dc:creator>
    <dc:contributor>Behrisch, Michael</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dcterms:available>
    <dcterms:issued>2014</dcterms:issued>
    <dc:contributor>Kwon, Bum Chul</dc:contributor>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:abstract xml:lang="eng">Extracting meaningful information out of vast amounts of highdimensional data is very difficult. Prior research studies have been trying to solve these problems through either automatic data analysis or interactive visualization approaches. Our grand goal is to derive the representative and generalizable quality metrics and to apply the metrics to amplify interesting patterns as well as to mute the uninteresting noise for multidimensional visualizations. In this particular poster, we investigate quality metrics driven approach to achieve the goal for scatterplot matrix (SPLOM). Our main approach is to rearrange scatterplot matrices by sorting scatterplots based upon their patterns especially locally significant ones, called scatterplot motifs. Using the approach, we expect scatterplot matrices to reveal groups of visual patterns appearing adjacent to each other, which helps analysts to gain a clear overview and to delve into specific areas of interest more easily. Our ongoing investigation aims to test and refine the feature vector for scatterplot motifs depending upon data sizes and the number of dimensions.</dcterms:abstract>
    <dc:creator>Behrisch, Michael</dc:creator>
    <dcterms:title>Quality Metrics Driven Approach to Visualize Multidimensional Data in Scatterplot Matrix</dcterms:title>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/30222"/>
    <dc:creator>Shao, Lin</dc:creator>
    <dc:contributor>Sipiran, Ivan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schreck, Tobias</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-03-11T16:28:26Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen