Weakly Hyberbolic Equations in Domains with Boundaries

Lade...
Vorschaubild
Dateien
preprint_022.pdf
preprint_022.pdfGröße: 282.57 KBDownloads: 87
Datum
1996
Autor:innen
D'Ancona, Piero
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Konstanzer Schriften in Mathematik und Informatik
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung

We consider weakly hyperbolic equations of the type utt(t)+a(t)Au(t)=f(t,u(t)), u(0)=u0, ut(0)=u1, u(t) in D(A), t in [0,T], for a function u:[0,T]->H, T a nonnegative real, H a separable Hilbert space, A being a non-negative, self-adjoint operator with domain D(A). The real function a is assumed to be non-negative, continuous and (piecewise) continuous differentiable, and the derivative a' will have to satisfy an integrability condition, which will admit infinitely many oscillations near the point of degeneration. For given initial data u0, u1 a global existence theorem in C([0,T],D(As)) is proved for the linear problem f=f(t). If a' does not change sign, the result can be improved, and finally a local (in time) existence theorem can be proved for nonlinearities f essentially satisfying the mapping property f(., D(As)) is subset of D(As), where s>0 describes the regularity class. In the applications, A will be a uniformly elliptic operator in a domain Omega, Omega being a bounded domain with smooth boundary in Rn, n>=2, for second-order operators then describing a weakly hyperbolic wave equation.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690D'ANCONA, Piero, Reinhard RACKE, 1996. Weakly Hyberbolic Equations in Domains with Boundaries
BibTex
@unpublished{DAncona1996Weakl-710,
  year={1996},
  title={Weakly Hyberbolic Equations in Domains with Boundaries},
  author={D'Ancona, Piero and Racke, Reinhard}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/710">
    <dc:contributor>D'Ancona, Piero</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>1996</dcterms:issued>
    <dc:format>application/pdf</dc:format>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/710"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:35Z</dc:date>
    <dc:creator>D'Ancona, Piero</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:35Z</dcterms:available>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/710/1/preprint_022.pdf"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>Weakly Hyberbolic Equations in Domains with Boundaries</dcterms:title>
    <dc:creator>Racke, Reinhard</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">We consider weakly hyperbolic equations of the type utt(t)+a(t)Au(t)=f(t,u(t)), u(0)=u0, ut(0)=u1, u(t) in D(A), t in [0,T], for a function u:[0,T]-&gt;H, T a nonnegative real, H a separable Hilbert space, A being a non-negative, self-adjoint operator with domain D(A). The real function a is assumed to be non-negative, continuous and (piecewise) continuous differentiable, and the derivative a' will have to satisfy an integrability condition, which will admit infinitely many oscillations near the point of degeneration. For given initial data u0, u1 a global existence theorem in C([0,T],D(As)) is proved for the linear problem f=f(t). If a' does not change sign, the result can be improved, and finally a local (in time) existence theorem can be proved for nonlinearities f essentially satisfying the mapping property f(., D(As)) is subset of D(As), where s&gt;0 describes the regularity class. In the applications, A will be a uniformly elliptic operator in a domain Omega, Omega being a bounded domain with smooth boundary in Rn, n&gt;=2, for second-order operators then describing a weakly hyperbolic wave equation.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/710/1/preprint_022.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Racke, Reinhard</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen