Publikation:

Goodness of fit tests for random multigraph models

Lade...
Vorschaubild

Dateien

Shafie_2-1oljutzilfklf3.pdf
Shafie_2-1oljutzilfklf3.pdfGröße: 2.77 MBDownloads: 29

Datum

2023

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Applied Statistics. Taylor & Francis. 2023, 50(15), pp. 3062-3087. ISSN 0266-4763. eISSN 1360-0532. Available under: doi: 10.1080/02664763.2022.2099816

Zusammenfassung

Goodness of fit tests for two probabilistic multigraph models are presented. The first model is random stub matching given fixed degrees (RSM) so that edge assignments to vertex pair sites are dependent, and the second is independent edge assignments (IEA) according to a common probability distribution. Tests are performed using goodness of fit measures between the edge multiplicity sequence of an observed multigraph, and the expected one according to a simple or composite hypothesis. Test statistics of Pearson type and of likelihood ratio type are used, and the expected values of the Pearson statistic under the different models are derived. Test performances based on simulations indicate that even for small number of edges, the null distributions of both statistics are well approximated by their asymptotic χ2-distribution. The non-null distributions of the test statistics can be well approximated by proposed adjusted χ2-distributions used for power approximations. The influence of RSM on both test statistics is substantial for small number of edges and implies a shift of their distributions towards smaller values compared to what holds true for the null distributions under IEA. Two applications on social networks are included to illustrate how the tests can guide in the analysis of social structure.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
310 Statistik

Schlagwörter

Network model, multivariate networks, data aggregation, random multigraphs, goodness of fit, random stub matching

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690SHAFIE, Termeh, 2023. Goodness of fit tests for random multigraph models. In: Journal of Applied Statistics. Taylor & Francis. 2023, 50(15), pp. 3062-3087. ISSN 0266-4763. eISSN 1360-0532. Available under: doi: 10.1080/02664763.2022.2099816
BibTex
@article{Shafie2023Goodn-66689,
  year={2023},
  doi={10.1080/02664763.2022.2099816},
  title={Goodness of fit tests for random multigraph models},
  number={15},
  volume={50},
  issn={0266-4763},
  journal={Journal of Applied Statistics},
  pages={3062--3087},
  author={Shafie, Termeh}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66689">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66689"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:39:05Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66689/1/Shafie_2-1oljutzilfklf3.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:issued>2023</dcterms:issued>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Shafie, Termeh</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:39:05Z</dcterms:available>
    <dc:contributor>Shafie, Termeh</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:abstract>Goodness of fit tests for two probabilistic multigraph models are presented. The first model is random stub matching given fixed degrees (RSM) so that edge assignments to vertex pair sites are dependent, and the second is independent edge assignments (IEA) according to a common probability distribution. Tests are performed using goodness of fit measures between the edge multiplicity sequence of an observed multigraph, and the expected one according to a simple or composite hypothesis. Test statistics of Pearson type and of likelihood ratio type are used, and the expected values of the Pearson statistic under the different models are derived. Test performances based on simulations indicate that even for small number of edges, the null distributions of both statistics are well approximated by their asymptotic χ2-distribution. The non-null distributions of the test statistics can be well approximated by proposed adjusted χ2-distributions used for power approximations. The influence of RSM on both test statistics is substantial for small number of edges and implies a shift of their distributions towards smaller values compared to what holds true for the null distributions under IEA. Two applications on social networks are included to illustrate how the tests can guide in the analysis of social structure.</dcterms:abstract>
    <dcterms:title>Goodness of fit tests for random multigraph models</dcterms:title>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66689/1/Shafie_2-1oljutzilfklf3.pdf"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen