Publikation: Goodness of fit tests for random multigraph models
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Goodness of fit tests for two probabilistic multigraph models are presented. The first model is random stub matching given fixed degrees (RSM) so that edge assignments to vertex pair sites are dependent, and the second is independent edge assignments (IEA) according to a common probability distribution. Tests are performed using goodness of fit measures between the edge multiplicity sequence of an observed multigraph, and the expected one according to a simple or composite hypothesis. Test statistics of Pearson type and of likelihood ratio type are used, and the expected values of the Pearson statistic under the different models are derived. Test performances based on simulations indicate that even for small number of edges, the null distributions of both statistics are well approximated by their asymptotic χ2-distribution. The non-null distributions of the test statistics can be well approximated by proposed adjusted χ2-distributions used for power approximations. The influence of RSM on both test statistics is substantial for small number of edges and implies a shift of their distributions towards smaller values compared to what holds true for the null distributions under IEA. Two applications on social networks are included to illustrate how the tests can guide in the analysis of social structure.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SHAFIE, Termeh, 2023. Goodness of fit tests for random multigraph models. In: Journal of Applied Statistics. Taylor & Francis. 2023, 50(15), pp. 3062-3087. ISSN 0266-4763. eISSN 1360-0532. Available under: doi: 10.1080/02664763.2022.2099816BibTex
@article{Shafie2023Goodn-66689, year={2023}, doi={10.1080/02664763.2022.2099816}, title={Goodness of fit tests for random multigraph models}, number={15}, volume={50}, issn={0266-4763}, journal={Journal of Applied Statistics}, pages={3062--3087}, author={Shafie, Termeh} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/66689"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/66689"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:39:05Z</dc:date> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66689/1/Shafie_2-1oljutzilfklf3.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dcterms:issued>2023</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Shafie, Termeh</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-04-20T08:39:05Z</dcterms:available> <dc:contributor>Shafie, Termeh</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract>Goodness of fit tests for two probabilistic multigraph models are presented. The first model is random stub matching given fixed degrees (RSM) so that edge assignments to vertex pair sites are dependent, and the second is independent edge assignments (IEA) according to a common probability distribution. Tests are performed using goodness of fit measures between the edge multiplicity sequence of an observed multigraph, and the expected one according to a simple or composite hypothesis. Test statistics of Pearson type and of likelihood ratio type are used, and the expected values of the Pearson statistic under the different models are derived. Test performances based on simulations indicate that even for small number of edges, the null distributions of both statistics are well approximated by their asymptotic χ2-distribution. The non-null distributions of the test statistics can be well approximated by proposed adjusted χ2-distributions used for power approximations. The influence of RSM on both test statistics is substantial for small number of edges and implies a shift of their distributions towards smaller values compared to what holds true for the null distributions under IEA. Two applications on social networks are included to illustrate how the tests can guide in the analysis of social structure.</dcterms:abstract> <dcterms:title>Goodness of fit tests for random multigraph models</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/66689/1/Shafie_2-1oljutzilfklf3.pdf"/> </rdf:Description> </rdf:RDF>