Publikation:

On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems

Lade...
Vorschaubild

Dateien

Azmi_2-1mo7wv896vl3i1.pdf
Azmi_2-1mo7wv896vl3i1.pdfGröße: 1.92 MBDownloads: 2

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): Grant number VO 1658/5-2

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Computational Optimization and Applications. Springer. 2025, 91(3), S. 1263-1308. ISSN 0926-6003. eISSN 1573-2894. Verfügbar unter: doi: 10.1007/s10589-025-00684-x

Zusammenfassung

This paper provides a comprehensive study of the nonmonotone forward–backward splitting (FBS) method for solving a class of nonsmooth composite problems in Hilbert spaces. The objective function is the sum of a Fréchet differentiable (not necessarily convex) function and a proper lower semicontinuous convex (not necessarily smooth) function. These problems appear, for example, frequently in the context of optimal control of nonlinear partial differential equations (PDEs) with nonsmooth sparsity-promoting cost functionals. We discuss the convergence and complexity of FBS equipped with the nonmonotone linesearch under different conditions. In particular, R-linear convergence will be derived under quadratic growth-type conditions. We also investigate the applicability of the algorithm to problems governed by PDEs. Numerical experiments are also given that justify our theoretical findings.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690AZMI, Behzad, Marco BERNREUTHER, 2025. On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems. In: Computational Optimization and Applications. Springer. 2025, 91(3), S. 1263-1308. ISSN 0926-6003. eISSN 1573-2894. Verfügbar unter: doi: 10.1007/s10589-025-00684-x
BibTex
@article{Azmi2025-05-08forwa-73610,
  title={On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems},
  year={2025},
  doi={10.1007/s10589-025-00684-x},
  number={3},
  volume={91},
  issn={0926-6003},
  journal={Computational Optimization and Applications},
  pages={1263--1308},
  author={Azmi, Behzad and Bernreuther, Marco}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73610">
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-17T09:15:45Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-17T09:15:45Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dcterms:abstract>This paper provides a comprehensive study of the nonmonotone forward–backward splitting (FBS) method for solving a class of nonsmooth composite problems in Hilbert spaces. The objective function is the sum of a Fréchet differentiable (not necessarily convex) function and a proper lower semicontinuous convex (not necessarily smooth) function. These problems appear, for example, frequently in the context of optimal control of nonlinear partial differential equations (PDEs) with nonsmooth sparsity-promoting cost functionals. We discuss the convergence and complexity of FBS equipped with the nonmonotone linesearch under different conditions. In particular, R-linear convergence will be derived under quadratic growth-type conditions. We also investigate the applicability of the algorithm to problems governed by PDEs. Numerical experiments are also given that justify our theoretical findings.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73610/1/Azmi_2-1mo7wv896vl3i1.pdf"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Bernreuther, Marco</dc:contributor>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73610/1/Azmi_2-1mo7wv896vl3i1.pdf"/>
    <dc:creator>Bernreuther, Marco</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems</dcterms:title>
    <dc:contributor>Azmi, Behzad</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Azmi, Behzad</dc:creator>
    <dcterms:issued>2025-05-08</dcterms:issued>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73610"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen