Publikation: On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
This paper provides a comprehensive study of the nonmonotone forward–backward splitting (FBS) method for solving a class of nonsmooth composite problems in Hilbert spaces. The objective function is the sum of a Fréchet differentiable (not necessarily convex) function and a proper lower semicontinuous convex (not necessarily smooth) function. These problems appear, for example, frequently in the context of optimal control of nonlinear partial differential equations (PDEs) with nonsmooth sparsity-promoting cost functionals. We discuss the convergence and complexity of FBS equipped with the nonmonotone linesearch under different conditions. In particular, R-linear convergence will be derived under quadratic growth-type conditions. We also investigate the applicability of the algorithm to problems governed by PDEs. Numerical experiments are also given that justify our theoretical findings.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
AZMI, Behzad, Marco BERNREUTHER, 2025. On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems. In: Computational Optimization and Applications. Springer. 2025, 91(3), S. 1263-1308. ISSN 0926-6003. eISSN 1573-2894. Verfügbar unter: doi: 10.1007/s10589-025-00684-xBibTex
@article{Azmi2025-05-08forwa-73610, title={On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems}, year={2025}, doi={10.1007/s10589-025-00684-x}, number={3}, volume={91}, issn={0926-6003}, journal={Computational Optimization and Applications}, pages={1263--1308}, author={Azmi, Behzad and Bernreuther, Marco} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73610"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-17T09:15:45Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-06-17T09:15:45Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dcterms:abstract>This paper provides a comprehensive study of the nonmonotone forward–backward splitting (FBS) method for solving a class of nonsmooth composite problems in Hilbert spaces. The objective function is the sum of a Fréchet differentiable (not necessarily convex) function and a proper lower semicontinuous convex (not necessarily smooth) function. These problems appear, for example, frequently in the context of optimal control of nonlinear partial differential equations (PDEs) with nonsmooth sparsity-promoting cost functionals. We discuss the convergence and complexity of FBS equipped with the nonmonotone linesearch under different conditions. In particular, R-linear convergence will be derived under quadratic growth-type conditions. We also investigate the applicability of the algorithm to problems governed by PDEs. Numerical experiments are also given that justify our theoretical findings.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73610/1/Azmi_2-1mo7wv896vl3i1.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Bernreuther, Marco</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/73610/1/Azmi_2-1mo7wv896vl3i1.pdf"/> <dc:creator>Bernreuther, Marco</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>On the forward–backward method with nonmonotone linesearch for infinite-dimensional nonsmooth nonconvex problems</dcterms:title> <dc:contributor>Azmi, Behzad</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Azmi, Behzad</dc:creator> <dcterms:issued>2025-05-08</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73610"/> </rdf:Description> </rdf:RDF>