Publikation:

Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data

Lade...
Vorschaubild

Dateien

Jentner_2-1e8x9clmy6c6v0.pdf
Jentner_2-1e8x9clmy6c6v0.pdfGröße: 8.88 MBDownloads: 40

Datum

2023

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

European Union (EU): 826494

Projekt

PRIMAGE - PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

ACM Transactions on Interactive Intelligent Systems. ACM. 2023, 13(2), 10. ISSN 2160-6455. eISSN 2160-6463. Available under: doi: 10.1145/3579031

Zusammenfassung

We present an approach that shows all relevant subspaces of categorical data condensed in a single picture. We model the categorical values of the attributes as co-occurrences with data partitions generated from structured data using pattern mining. We show that these co-occurrences are a-priori allowing us to greatly reduce the search space effectively generating the condensed picture where conventional approaches filter out several subspaces as these are deemed insignificant. The task of identifying interesting subspaces is common but difficult due to exponential search spaces and the curse of dimensionality. One application of such a task might be identifying a cohort of patients defined by attributes such as gender, age, and diabetes type that share a common patient history, which is modeled as event sequences. Filtering the data by these attributes is common but cumbersome and often does not allow a comparison of subspaces. We contribute a powerful multi-dimensional pattern exploration approach (MDPE-approach) agnostic to the structured data type that models multiple attributes and their characteristics as co-occurrences, allowing the user to identify and compare thousands of subspaces of interest in a single picture. In our MDPE-approach, we introduce two methods to dramatically reduce the search space, outputting only the boundaries of the search space in the form of two tables. We implement the MDPE-approach in an interactive visual interface (MDPE-vis) that provides a scalable, pixel-based visualization design allowing the identification, comparison, and sense-making of subspaces in structured data. Our case studies using a gold-standard dataset and external domain experts confirm our approach’s and implementation’s applicability. A third use case sheds light on the scalability of our approach and a user study with 15 participants underlines its usefulness and power.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

structured data mining, pattern mining, subspace search

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690JENTNER, Wolfgang, Giuliana LINDHOLZ, Hanna SCHÄFER, Mennatallah EL-ASSADY, Kwan-Liu MA, Daniel A. KEIM, 2023. Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data. In: ACM Transactions on Interactive Intelligent Systems. ACM. 2023, 13(2), 10. ISSN 2160-6455. eISSN 2160-6463. Available under: doi: 10.1145/3579031
BibTex
@article{Jentner2023Visua-59965,
  year={2023},
  doi={10.1145/3579031},
  title={Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data},
  url={https://dl.acm.org/doi/10.1145/3579031},
  number={2},
  volume={13},
  issn={2160-6455},
  journal={ACM Transactions on Interactive Intelligent Systems},
  author={Jentner, Wolfgang and Lindholz, Giuliana and Schäfer, Hanna and El-Assady, Mennatallah and Ma, Kwan-Liu and Keim, Daniel A.},
  note={Article Number: 10}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59965">
    <dcterms:abstract xml:lang="eng">We present an approach that shows all relevant subspaces of categorical data condensed in a single picture. We model the categorical values of the attributes as co-occurrences with data partitions generated from structured data using pattern mining. We show that these co-occurrences are a-priori allowing us to greatly reduce the search space effectively generating the condensed picture where conventional approaches filter out several subspaces as these are deemed insignificant. The task of identifying interesting subspaces is common but difficult due to exponential search spaces and the curse of dimensionality. One application of such a task might be identifying a cohort of patients defined by attributes such as gender, age, and diabetes type that share a common patient history, which is modeled as event sequences. Filtering the data by these attributes is common but cumbersome and often does not allow a comparison of subspaces. We contribute a powerful multi-dimensional pattern exploration approach (MDPE-approach) agnostic to the structured data type that models multiple attributes and their characteristics as co-occurrences, allowing the user to identify and compare thousands of subspaces of interest in a single picture. In our MDPE-approach, we introduce two methods to dramatically reduce the search space, outputting only the boundaries of the search space in the form of two tables. We implement the MDPE-approach in an interactive visual interface (MDPE-vis) that provides a scalable, pixel-based visualization design allowing the identification, comparison, and sense-making of subspaces in structured data. Our case studies using a gold-standard dataset and external domain experts confirm our approach’s and implementation’s applicability. A third use case sheds light on the scalability of our approach and a user study with 15 participants underlines its usefulness and power.</dcterms:abstract>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T08:31:02Z</dcterms:available>
    <dc:contributor>Jentner, Wolfgang</dc:contributor>
    <dcterms:issued>2023</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Visual Analytics of Co-Occurrences to Discover Subspaces in Structured Data</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Schäfer, Hanna</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59965"/>
    <dc:contributor>Schäfer, Hanna</dc:contributor>
    <dc:creator>Jentner, Wolfgang</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59965/3/Jentner_2-1e8x9clmy6c6v0.pdf"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59965/3/Jentner_2-1e8x9clmy6c6v0.pdf"/>
    <dc:creator>Ma, Kwan-Liu</dc:creator>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dc:contributor>Lindholz, Giuliana</dc:contributor>
    <dc:contributor>Ma, Kwan-Liu</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-30T08:31:02Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lindholz, Giuliana</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen