An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Autor:innen
Carraro, Thomas
Dörsam, Simon
Schwarz, Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Optimization Theory and Applications. Springer. 2018, 177(2), pp. 498-534. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-018-1242-4
Zusammenfassung

In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Optimal control, PDE constraints, Adaptive finite elements, DWR method, A posteriori error estimation, Inexact Newton method, Stopping criteria, Electroporation, Neuronal network
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690CARRARO, Thomas, Simon DÖRSAM, Stefan FREI, Daniel SCHWARZ, 2018. An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design. In: Journal of Optimization Theory and Applications. Springer. 2018, 177(2), pp. 498-534. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-018-1242-4
BibTex
@article{Carraro2018Adapt-55768,
  year={2018},
  doi={10.1007/s10957-018-1242-4},
  title={An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design},
  number={2},
  volume={177},
  issn={0022-3239},
  journal={Journal of Optimization Theory and Applications},
  pages={498--534},
  author={Carraro, Thomas and Dörsam, Simon and Frei, Stefan and Schwarz, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55768">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dörsam, Simon</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.</dcterms:abstract>
    <dc:creator>Schwarz, Daniel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Frei, Stefan</dc:creator>
    <dc:creator>Carraro, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schwarz, Daniel</dc:contributor>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Carraro, Thomas</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Dörsam, Simon</dc:contributor>
    <dcterms:title>An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55768"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen