An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
CARRARO, Thomas, Simon DÖRSAM, Stefan FREI, Daniel SCHWARZ, 2018. An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design. In: Journal of Optimization Theory and Applications. Springer. 2018, 177(2), pp. 498-534. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-018-1242-4BibTex
@article{Carraro2018Adapt-55768, year={2018}, doi={10.1007/s10957-018-1242-4}, title={An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design}, number={2}, volume={177}, issn={0022-3239}, journal={Journal of Optimization Theory and Applications}, pages={498--534}, author={Carraro, Thomas and Dörsam, Simon and Frei, Stefan and Schwarz, Daniel} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55768"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dörsam, Simon</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.</dcterms:abstract> <dc:creator>Schwarz, Daniel</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Frei, Stefan</dc:creator> <dc:creator>Carraro, Thomas</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Schwarz, Daniel</dc:contributor> <dc:contributor>Frei, Stefan</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Carraro, Thomas</dc:contributor> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Dörsam, Simon</dc:contributor> <dcterms:title>An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55768"/> </rdf:Description> </rdf:RDF>