Publikation:

An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2018

Autor:innen

Carraro, Thomas
Dörsam, Simon
Schwarz, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Optimization Theory and Applications. Springer. 2018, 177(2), pp. 498-534. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-018-1242-4

Zusammenfassung

In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Optimal control, PDE constraints, Adaptive finite elements, DWR method, A posteriori error estimation, Inexact Newton method, Stopping criteria, Electroporation, Neuronal network

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690CARRARO, Thomas, Simon DÖRSAM, Stefan FREI, Daniel SCHWARZ, 2018. An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design. In: Journal of Optimization Theory and Applications. Springer. 2018, 177(2), pp. 498-534. ISSN 0022-3239. eISSN 1573-2878. Available under: doi: 10.1007/s10957-018-1242-4
BibTex
@article{Carraro2018Adapt-55768,
  year={2018},
  doi={10.1007/s10957-018-1242-4},
  title={An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design},
  number={2},
  volume={177},
  issn={0022-3239},
  journal={Journal of Optimization Theory and Applications},
  pages={498--534},
  author={Carraro, Thomas and Dörsam, Simon and Frei, Stefan and Schwarz, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55768">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Dörsam, Simon</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this work, we present an adaptive Newton-type method to solve nonlinear constrained optimization problems, in which the constraint is a system of partial differential equations discretized by the finite element method. The adaptive strategy is based on a goal-oriented a posteriori error estimation for the discretization and for the iteration error. The iteration error stems from an inexact solution of the nonlinear system of first-order optimality conditions by the Newton-type method. This strategy allows one to balance the two errors and to derive effective stopping criteria for the Newton iterations. The algorithm proceeds with the search of the optimal point on coarse grids, which are refined only if the discretization error becomes dominant. Using computable error indicators, the mesh is refined locally leading to a highly efficient solution process. The performance of the algorithm is shown with several examples and in particular with an application in the neurosciences: the optimal electrode design for the study of neuronal networks.</dcterms:abstract>
    <dc:creator>Schwarz, Daniel</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Frei, Stefan</dc:creator>
    <dc:creator>Carraro, Thomas</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T09:48:15Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schwarz, Daniel</dc:contributor>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:contributor>Carraro, Thomas</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Dörsam, Simon</dc:contributor>
    <dcterms:title>An Adaptive Newton Algorithm for Optimal Control Problems with Application to Optimal Electrode Design</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55768"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja
Diese Publikation teilen