Publikation: Convex monotone semigroups and their generators with respect to Γ-convergence
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We study semigroups of convex monotone operators on spaces of continuous functions and their behaviour with respect to Γ-convergence. In contrast to the linear theory, the domain of the generator is, in general, not invariant under the semigroup. To overcome this issue, we consider different versions of invariant Lipschitz sets which turn out to be suitable domains for weaker notions of the generator. The so-called Γ-generator is defined as the time derivative with respect to Γ-convergence in the space of upper semicontinuous functions. Under suitable assumptions, we show that the Γ-generator uniquely characterizes the semigroup and is determined by its evaluation at smooth functions. Furthermore, we provide Chernoff approximation results for convex monotone semigroups and show that approximation schemes based on the same infinitesimal behaviour lead to the same semigroup. Our results are applied to semigroups related to stochastic optimal control problems in finite and infinite-dimensional settings as well as Wasserstein perturbations of transition semigroups.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLESSING, Jonas, Robert DENK, Michael KUPPER, Max NENDEL, 2025. Convex monotone semigroups and their generators with respect to Γ-convergence. In: Journal of Functional Analysis. Elsevier. 2025, 288(8), 110841. ISSN 0022-1236. eISSN 1096-0783. Verfügbar unter: doi: 10.1016/j.jfa.2025.110841BibTex
@article{Blessing2025-04Conve-72617, title={Convex monotone semigroups and their generators with respect to Γ-convergence}, year={2025}, doi={10.1016/j.jfa.2025.110841}, number={8}, volume={288}, issn={0022-1236}, journal={Journal of Functional Analysis}, author={Blessing, Jonas and Denk, Robert and Kupper, Michael and Nendel, Max}, note={Article Number: 110841} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72617"> <dc:contributor>Denk, Robert</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72617"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract>We study semigroups of convex monotone operators on spaces of continuous functions and their behaviour with respect to Γ-convergence. In contrast to the linear theory, the domain of the generator is, in general, not invariant under the semigroup. To overcome this issue, we consider different versions of invariant Lipschitz sets which turn out to be suitable domains for weaker notions of the generator. The so-called Γ-generator is defined as the time derivative with respect to Γ-convergence in the space of upper semicontinuous functions. Under suitable assumptions, we show that the Γ-generator uniquely characterizes the semigroup and is determined by its evaluation at smooth functions. Furthermore, we provide Chernoff approximation results for convex monotone semigroups and show that approximation schemes based on the same infinitesimal behaviour lead to the same semigroup. Our results are applied to semigroups related to stochastic optimal control problems in finite and infinite-dimensional settings as well as Wasserstein perturbations of transition semigroups.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:37:45Z</dcterms:available> <dc:contributor>Blessing, Jonas</dc:contributor> <dcterms:title>Convex monotone semigroups and their generators with respect to Γ-convergence</dcterms:title> <dcterms:issued>2025-04</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Blessing, Jonas</dc:creator> <dc:creator>Kupper, Michael</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Denk, Robert</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:37:45Z</dc:date> <dc:contributor>Kupper, Michael</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Nendel, Max</dc:creator> <dc:contributor>Nendel, Max</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>