Publikation:

Convex monotone semigroups and their generators with respect to Γ-convergence

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2025

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): SFB 1283/2 2021 \u2013 317210226

Projekt

Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Journal of Functional Analysis. Elsevier. 2025, 288(8), 110841. ISSN 0022-1236. eISSN 1096-0783. Verfügbar unter: doi: 10.1016/j.jfa.2025.110841

Zusammenfassung

We study semigroups of convex monotone operators on spaces of continuous functions and their behaviour with respect to Γ-convergence. In contrast to the linear theory, the domain of the generator is, in general, not invariant under the semigroup. To overcome this issue, we consider different versions of invariant Lipschitz sets which turn out to be suitable domains for weaker notions of the generator. The so-called Γ-generator is defined as the time derivative with respect to Γ-convergence in the space of upper semicontinuous functions. Under suitable assumptions, we show that the Γ-generator uniquely characterizes the semigroup and is determined by its evaluation at smooth functions. Furthermore, we provide Chernoff approximation results for convex monotone semigroups and show that approximation schemes based on the same infinitesimal behaviour lead to the same semigroup. Our results are applied to semigroups related to stochastic optimal control problems in finite and infinite-dimensional settings as well as Wasserstein perturbations of transition semigroups.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Convex monotone semigroup, Γ-convergence, Comparison principle, Chernoff approximation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690BLESSING, Jonas, Robert DENK, Michael KUPPER, Max NENDEL, 2025. Convex monotone semigroups and their generators with respect to Γ-convergence. In: Journal of Functional Analysis. Elsevier. 2025, 288(8), 110841. ISSN 0022-1236. eISSN 1096-0783. Verfügbar unter: doi: 10.1016/j.jfa.2025.110841
BibTex
@article{Blessing2025-04Conve-72617,
  title={Convex monotone semigroups and their generators with respect to Γ-convergence},
  year={2025},
  doi={10.1016/j.jfa.2025.110841},
  number={8},
  volume={288},
  issn={0022-1236},
  journal={Journal of Functional Analysis},
  author={Blessing, Jonas and Denk, Robert and Kupper, Michael and Nendel, Max},
  note={Article Number: 110841}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72617">
    <dc:contributor>Denk, Robert</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72617"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract>We study semigroups of convex monotone operators on spaces of continuous functions and their behaviour with respect to Γ-convergence. In contrast to the linear theory, the domain of the generator is, in general, not invariant under the semigroup. To overcome this issue, we consider different versions of invariant Lipschitz sets which turn out to be suitable domains for weaker notions of the generator. The so-called Γ-generator is defined as the time derivative with respect to Γ-convergence in the space of upper semicontinuous functions. Under suitable assumptions, we show that the Γ-generator uniquely characterizes the semigroup and is determined by its evaluation at smooth functions. Furthermore, we provide Chernoff approximation results for convex monotone semigroups and show that approximation schemes based on the same infinitesimal behaviour lead to the same semigroup. Our results are applied to semigroups related to stochastic optimal control problems in finite and infinite-dimensional settings as well as Wasserstein perturbations of transition semigroups.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:37:45Z</dcterms:available>
    <dc:contributor>Blessing, Jonas</dc:contributor>
    <dcterms:title>Convex monotone semigroups and their generators with respect to Γ-convergence</dcterms:title>
    <dcterms:issued>2025-04</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Blessing, Jonas</dc:creator>
    <dc:creator>Kupper, Michael</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Denk, Robert</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-11T08:37:45Z</dc:date>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Nendel, Max</dc:creator>
    <dc:contributor>Nendel, Max</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen