An Introduction to Maximal Regularity for Parabolic Evolution Equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this note, we give an introduction to the concept of maximal Lp-regularity as a method to solve nonlinear partial differential equations. We first define maximal regularity for autonomous and non-autonomous problems and describe the connection to Fourier multipliers and R-boundedness. The abstract results are applied to a large class of parabolic systems in the whole space and to general parabolic boundary value problems. For this, both the construction of solution operators for boundary value problems and a characterization of trace spaces of Sobolev spaces are discussed. For the nonlinear equation, we obtain local in time well-posedness in appropriately chosen Sobolev spaces. This manuscript is based on known results and consists of an extended version of lecture notes on this topic.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, 2021. An Introduction to Maximal Regularity for Parabolic Evolution Equations. International workshop on Nonlinear Partial Differential Equations for Future Applications, PDEFA 2017. Sendai, Japan, 2. Okt. 2017 - 6. Okt. 2017. In: KOIKE, Shigeaki, ed., Hideo KOZONO, ed., Takayoshi OGAWA, ed. and others. Nonlinear Partial Differential Equations for Future Applications. Singapore: Springer, 2021, pp. 1-70. ISSN 2194-1009. eISSN 2194-1017. ISBN 978-981-3348-21-9. Available under: doi: 10.1007/978-981-33-4822-6_1BibTex
@inproceedings{Denk2021Intro-55632, year={2021}, doi={10.1007/978-981-33-4822-6_1}, title={An Introduction to Maximal Regularity for Parabolic Evolution Equations}, isbn={978-981-3348-21-9}, issn={2194-1009}, publisher={Springer}, address={Singapore}, booktitle={Nonlinear Partial Differential Equations for Future Applications}, pages={1--70}, editor={Koike, Shigeaki and Kozono, Hideo and Ogawa, Takayoshi}, author={Denk, Robert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55632"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55632"/> <dcterms:issued>2021</dcterms:issued> <dcterms:title>An Introduction to Maximal Regularity for Parabolic Evolution Equations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:11:56Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In this note, we give an introduction to the concept of maximal L<sup>p</sup>-regularity as a method to solve nonlinear partial differential equations. We first define maximal regularity for autonomous and non-autonomous problems and describe the connection to Fourier multipliers and R-boundedness. The abstract results are applied to a large class of parabolic systems in the whole space and to general parabolic boundary value problems. For this, both the construction of solution operators for boundary value problems and a characterization of trace spaces of Sobolev spaces are discussed. For the nonlinear equation, we obtain local in time well-posedness in appropriately chosen Sobolev spaces. This manuscript is based on known results and consists of an extended version of lecture notes on this topic.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:11:56Z</dcterms:available> <dc:creator>Denk, Robert</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>