An Introduction to Maximal Regularity for Parabolic Evolution Equations
An Introduction to Maximal Regularity for Parabolic Evolution Equations
No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Nonlinear Partial Differential Equations for Future Applications / Koike, Shigeaki; Kozono, Hideo; Ogawa, Takayoshi et al. (ed.). - Singapore : Springer, 2021. - pp. 1-70. - ISSN 2194-1009. - eISSN 2194-1017. - ISBN 978-981-3348-21-9
Abstract
In this note, we give an introduction to the concept of maximal Lp-regularity as a method to solve nonlinear partial differential equations. We first define maximal regularity for autonomous and non-autonomous problems and describe the connection to Fourier multipliers and R-boundedness. The abstract results are applied to a large class of parabolic systems in the whole space and to general parabolic boundary value problems. For this, both the construction of solution operators for boundary value problems and a characterization of trace spaces of Sobolev spaces are discussed. For the nonlinear equation, we obtain local in time well-posedness in appropriately chosen Sobolev spaces. This manuscript is based on known results and consists of an extended version of lecture notes on this topic.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Maximal regularity, Fourier multipliers, Parabolic boundary value problems, Quasilinear evolution equations
Conference
International workshop on Nonlinear Partial Differential Equations for Future Applications, PDEFA 2017, Oct 2, 2017 - Oct 6, 2017, Sendai, Japan
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DENK, Robert, 2021. An Introduction to Maximal Regularity for Parabolic Evolution Equations. International workshop on Nonlinear Partial Differential Equations for Future Applications, PDEFA 2017. Sendai, Japan, Oct 2, 2017 - Oct 6, 2017. In: KOIKE, Shigeaki, ed., Hideo KOZONO, ed., Takayoshi OGAWA, ed. and others. Nonlinear Partial Differential Equations for Future Applications. Singapore:Springer, pp. 1-70. ISSN 2194-1009. eISSN 2194-1017. ISBN 978-981-3348-21-9. Available under: doi: 10.1007/978-981-33-4822-6_1BibTex
@inproceedings{Denk2021Intro-55632, year={2021}, doi={10.1007/978-981-33-4822-6_1}, title={An Introduction to Maximal Regularity for Parabolic Evolution Equations}, isbn={978-981-3348-21-9}, issn={2194-1009}, publisher={Springer}, address={Singapore}, booktitle={Nonlinear Partial Differential Equations for Future Applications}, pages={1--70}, editor={Koike, Shigeaki and Kozono, Hideo and Ogawa, Takayoshi}, author={Denk, Robert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55632"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55632"/> <dcterms:issued>2021</dcterms:issued> <dcterms:title>An Introduction to Maximal Regularity for Parabolic Evolution Equations</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:11:56Z</dc:date> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In this note, we give an introduction to the concept of maximal L<sup>p</sup>-regularity as a method to solve nonlinear partial differential equations. We first define maximal regularity for autonomous and non-autonomous problems and describe the connection to Fourier multipliers and R-boundedness. The abstract results are applied to a large class of parabolic systems in the whole space and to general parabolic boundary value problems. For this, both the construction of solution operators for boundary value problems and a characterization of trace spaces of Sobolev spaces are discussed. For the nonlinear equation, we obtain local in time well-posedness in appropriately chosen Sobolev spaces. This manuscript is based on known results and consists of an extended version of lecture notes on this topic.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-24T10:11:56Z</dcterms:available> <dc:creator>Denk, Robert</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes