Publikation: Adjoint-Based Calibration of Nonlinear Stochastic Differential Equations
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully to match the experimental data and to validate the effectiveness of the model. In the present paper the calibration of these parameters is described by nonlinear SDE-constrained optimization problems. In the optimize-before-discretize setting a rigorous analysis is carried out to ensure the existence of optimal solutions and to derive necessary first-order optimality conditions. For the numerical solution a Monte–Carlo method is applied using parallelization strategies to compensate for the high computational time. In the numerical examples an Ornstein–Uhlenbeck and a stochastic Prandtl–Tomlinson bath model are considered.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BARTSCH, Jan, Robert DENK, Stefan VOLKWEIN, 2024. Adjoint-Based Calibration of Nonlinear Stochastic Differential Equations. In: Applied Mathematics & Optimization. Springer. 2024, 90(3), 50. ISSN 0095-4616. eISSN 1432-0606. Verfügbar unter: doi: 10.1007/s00245-024-10181-yBibTex
@article{Bartsch2024-12Adjoi-71082, year={2024}, doi={10.1007/s00245-024-10181-y}, title={Adjoint-Based Calibration of Nonlinear Stochastic Differential Equations}, number={3}, volume={90}, issn={0095-4616}, journal={Applied Mathematics & Optimization}, author={Bartsch, Jan and Denk, Robert and Volkwein, Stefan}, note={Article Number: 50} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71082"> <dcterms:abstract>To study the nonlinear properties of complex natural phenomena, the evolution of the quantity of interest can be often represented by systems of coupled nonlinear stochastic differential equations (SDEs). These SDEs typically contain several parameters which have to be chosen carefully to match the experimental data and to validate the effectiveness of the model. In the present paper the calibration of these parameters is described by nonlinear SDE-constrained optimization problems. In the optimize-before-discretize setting a rigorous analysis is carried out to ensure the existence of optimal solutions and to derive necessary first-order optimality conditions. For the numerical solution a Monte–Carlo method is applied using parallelization strategies to compensate for the high computational time. In the numerical examples an Ornstein–Uhlenbeck and a stochastic Prandtl–Tomlinson bath model are considered.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71082"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71082/1/Bartsch_2-175sjwfaz9pf00.pdf"/> <dcterms:issued>2024-12</dcterms:issued> <dc:creator>Bartsch, Jan</dc:creator> <dc:contributor>Bartsch, Jan</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71082/1/Bartsch_2-175sjwfaz9pf00.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-31T09:26:25Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Volkwein, Stefan</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-31T09:26:25Z</dc:date> <dc:contributor>Denk, Robert</dc:contributor> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Denk, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Adjoint-Based Calibration of Nonlinear Stochastic Differential Equations</dcterms:title> </rdf:Description> </rdf:RDF>