Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Beck, Matthias
Haase, Christian
Higashitani, Akihiro
Hofscheier, Johannes
Jochemko, Katharina
Katthän, Lukas
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Annals of Combinatorics. Birkhäuser. 2019, 23(2), pp. 255-262. ISSN 0218-0006. eISSN 0219-3094. Available under: doi: 10.1007/s00026-019-00418-x
Zusammenfassung

In 1997 Oda conjectured that every smooth lattice polytope has the integer decomposition property. We prove Oda’s conjecture for centrally symmetric 3-dimensional polytopes, by showing they are covered by lattice parallelepipeds and unimodular simplices.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Smooth lattice polytopes, Integer decomposition property, Oda’s conjecture, Central symmetry, 3-dimensional polytopes
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690BECK, Matthias, Christian HAASE, Akihiro HIGASHITANI, Johannes HOFSCHEIER, Katharina JOCHEMKO, Lukas KATTHÄN, Mateusz MICHALEK, 2019. Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP. In: Annals of Combinatorics. Birkhäuser. 2019, 23(2), pp. 255-262. ISSN 0218-0006. eISSN 0219-3094. Available under: doi: 10.1007/s00026-019-00418-x
BibTex
@article{Beck2019Smoot-52209,
  year={2019},
  doi={10.1007/s00026-019-00418-x},
  title={Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP},
  number={2},
  volume={23},
  issn={0218-0006},
  journal={Annals of Combinatorics},
  pages={255--262},
  author={Beck, Matthias and Haase, Christian and Higashitani, Akihiro and Hofscheier, Johannes and Jochemko, Katharina and Katthän, Lukas and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52209">
    <dc:contributor>Haase, Christian</dc:contributor>
    <dc:contributor>Jochemko, Katharina</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Higashitani, Akihiro</dc:creator>
    <dc:contributor>Higashitani, Akihiro</dc:contributor>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Katthän, Lukas</dc:creator>
    <dcterms:abstract xml:lang="eng">In 1997 Oda conjectured that every smooth lattice polytope has the integer decomposition property. We prove Oda’s conjecture for centrally symmetric 3-dimensional polytopes, by showing they are covered by lattice parallelepipeds and unimodular simplices.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:29:21Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Jochemko, Katharina</dc:creator>
    <dc:contributor>Katthän, Lukas</dc:contributor>
    <dc:contributor>Beck, Matthias</dc:contributor>
    <dc:creator>Hofscheier, Johannes</dc:creator>
    <dc:creator>Beck, Matthias</dc:creator>
    <dc:creator>Haase, Christian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hofscheier, Johannes</dc:contributor>
    <dcterms:title>Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52209"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:29:21Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Unbekannt
Diese Publikation teilen