Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP

No Thumbnail Available
Files
There are no files associated with this item.
Date
2019
Authors
Beck, Matthias
Haase, Christian
Higashitani, Akihiro
Hofscheier, Johannes
Jochemko, Katharina
Katthän, Lukas
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Annals of Combinatorics ; 23 (2019), 2. - pp. 255-262. - Birkhäuser. - ISSN 0218-0006. - eISSN 0219-3094
Abstract
In 1997 Oda conjectured that every smooth lattice polytope has the integer decomposition property. We prove Oda’s conjecture for centrally symmetric 3-dimensional polytopes, by showing they are covered by lattice parallelepipeds and unimodular simplices.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Smooth lattice polytopes, Integer decomposition property, Oda’s conjecture, Central symmetry, 3-dimensional polytopes
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690BECK, Matthias, Christian HAASE, Akihiro HIGASHITANI, Johannes HOFSCHEIER, Katharina JOCHEMKO, Lukas KATTHÄN, Mateusz MICHALEK, 2019. Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP. In: Annals of Combinatorics. Birkhäuser. 23(2), pp. 255-262. ISSN 0218-0006. eISSN 0219-3094. Available under: doi: 10.1007/s00026-019-00418-x
BibTex
@article{Beck2019Smoot-52209,
  year={2019},
  doi={10.1007/s00026-019-00418-x},
  title={Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP},
  number={2},
  volume={23},
  issn={0218-0006},
  journal={Annals of Combinatorics},
  pages={255--262},
  author={Beck, Matthias and Haase, Christian and Higashitani, Akihiro and Hofscheier, Johannes and Jochemko, Katharina and Katthän, Lukas and Michalek, Mateusz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52209">
    <dc:contributor>Haase, Christian</dc:contributor>
    <dc:contributor>Jochemko, Katharina</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Higashitani, Akihiro</dc:creator>
    <dc:contributor>Higashitani, Akihiro</dc:contributor>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Katthän, Lukas</dc:creator>
    <dcterms:abstract xml:lang="eng">In 1997 Oda conjectured that every smooth lattice polytope has the integer decomposition property. We prove Oda’s conjecture for centrally symmetric 3-dimensional polytopes, by showing they are covered by lattice parallelepipeds and unimodular simplices.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:29:21Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Jochemko, Katharina</dc:creator>
    <dc:contributor>Katthän, Lukas</dc:contributor>
    <dc:contributor>Beck, Matthias</dc:contributor>
    <dc:creator>Hofscheier, Johannes</dc:creator>
    <dc:creator>Beck, Matthias</dc:creator>
    <dc:creator>Haase, Christian</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2019</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Hofscheier, Johannes</dc:contributor>
    <dcterms:title>Smooth Centrally Symmetric Polytopes in Dimension 3 are IDP</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52209"/>
    <dc:creator>Michalek, Mateusz</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-21T13:29:21Z</dc:date>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown