Publikation: Graph Kernels for Molecular Similarity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Molecular similarity measures are important for many cheminformatics applications like ligand‐based virtual screening and quantitative structure‐property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi‐definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel‐based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
RUPP, Matthias, Gisbert SCHNEIDER, 2010. Graph Kernels for Molecular Similarity. In: Molecular Informatics. Wiley. 2010, 29(4), pp. 266-273. ISSN 1868-1743. eISSN 1868-1751. Available under: doi: 10.1002/minf.200900080BibTex
@article{Rupp2010-04-12Graph-52230, year={2010}, doi={10.1002/minf.200900080}, title={Graph Kernels for Molecular Similarity}, number={4}, volume={29}, issn={1868-1743}, journal={Molecular Informatics}, pages={266--273}, author={Rupp, Matthias and Schneider, Gisbert} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52230"> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:issued>2010-04-12</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Rupp, Matthias</dc:contributor> <dcterms:title>Graph Kernels for Molecular Similarity</dcterms:title> <dc:creator>Rupp, Matthias</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52230"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-22T13:28:49Z</dc:date> <dc:creator>Schneider, Gisbert</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-12-22T13:28:49Z</dcterms:available> <dc:contributor>Schneider, Gisbert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Molecular similarity measures are important for many cheminformatics applications like ligand‐based virtual screening and quantitative structure‐property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi‐definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel‐based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics.</dcterms:abstract> </rdf:Description> </rdf:RDF>