Publikation: Leveraging uncertainty in collective opinion dynamics with heterogeneity
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents’ prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MENGERS, Vito, Mohsen RAOUFI, Oliver BROCK, Heiko HAMANN, Pawel ROMANCZUK, 2024. Leveraging uncertainty in collective opinion dynamics with heterogeneity. In: Scientific Reports. Springer. 2024, 14, 27314. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-78856-8BibTex
@article{Mengers2024-11-09Lever-71397, title={Leveraging uncertainty in collective opinion dynamics with heterogeneity}, year={2024}, doi={10.1038/s41598-024-78856-8}, volume={14}, journal={Scientific Reports}, author={Mengers, Vito and Raoufi, Mohsen and Brock, Oliver and Hamann, Heiko and Romanczuk, Pawel}, note={Article Number: 27314} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71397"> <dc:contributor>Raoufi, Mohsen</dc:contributor> <dc:creator>Raoufi, Mohsen</dc:creator> <dc:creator>Mengers, Vito</dc:creator> <dc:creator>Hamann, Heiko</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71397/1/Mengers_2-mi61yjxwty612.pdf"/> <dcterms:abstract>Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents’ prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.</dcterms:abstract> <dcterms:title>Leveraging uncertainty in collective opinion dynamics with heterogeneity</dcterms:title> <dc:creator>Brock, Oliver</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2024-11-09</dcterms:issued> <dc:creator>Romanczuk, Pawel</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Romanczuk, Pawel</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:contributor>Mengers, Vito</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71397/1/Mengers_2-mi61yjxwty612.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:31:25Z</dc:date> <dc:contributor>Brock, Oliver</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:31:25Z</dcterms:available> <dc:contributor>Hamann, Heiko</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71397"/> </rdf:Description> </rdf:RDF>