Publikation:

Leveraging uncertainty in collective opinion dynamics with heterogeneity

Lade...
Vorschaubild

Dateien

Mengers_2-mi61yjxwty612.pdf
Mengers_2-mi61yjxwty612.pdfGröße: 4.85 MBDownloads: 21

Datum

2024

Autor:innen

Mengers, Vito
Raoufi, Mohsen
Brock, Oliver
Romanczuk, Pawel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Scientific Reports. Springer. 2024, 14, 27314. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-78856-8

Zusammenfassung

Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents’ prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Datensatz
Dataset: Leveraging Uncertainty in Collective Opinion Dynamics with Heterogeneity
(2024) Raoufi, Mohsen; Mengers, Vito; Brock, Oliver; Hamann, Heiko; Romanczuk, Pawel

Zitieren

ISO 690MENGERS, Vito, Mohsen RAOUFI, Oliver BROCK, Heiko HAMANN, Pawel ROMANCZUK, 2024. Leveraging uncertainty in collective opinion dynamics with heterogeneity. In: Scientific Reports. Springer. 2024, 14, 27314. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-78856-8
BibTex
@article{Mengers2024-11-09Lever-71397,
  title={Leveraging uncertainty in collective opinion dynamics with heterogeneity},
  year={2024},
  doi={10.1038/s41598-024-78856-8},
  volume={14},
  journal={Scientific Reports},
  author={Mengers, Vito and Raoufi, Mohsen and Brock, Oliver and Hamann, Heiko and Romanczuk, Pawel},
  note={Article Number: 27314}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71397">
    <dc:contributor>Raoufi, Mohsen</dc:contributor>
    <dc:creator>Raoufi, Mohsen</dc:creator>
    <dc:creator>Mengers, Vito</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71397/1/Mengers_2-mi61yjxwty612.pdf"/>
    <dcterms:abstract>Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents’ prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.</dcterms:abstract>
    <dcterms:title>Leveraging uncertainty in collective opinion dynamics with heterogeneity</dcterms:title>
    <dc:creator>Brock, Oliver</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2024-11-09</dcterms:issued>
    <dc:creator>Romanczuk, Pawel</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:contributor>Romanczuk, Pawel</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Mengers, Vito</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/71397/1/Mengers_2-mi61yjxwty612.pdf"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:31:25Z</dc:date>
    <dc:contributor>Brock, Oliver</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-11-22T08:31:25Z</dcterms:available>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71397"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
The datasets generated and analyzed during the current study
Diese Publikation teilen