Datensatz:

Dataset: Leveraging Uncertainty in Collective Opinion Dynamics with Heterogeneity

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2024

Autor:innen

Raoufi, Mohsen
Mengers, Vito
Brock, Oliver
Romanczuk, Pawel

Repositorium der Erstveröffentlichung

Technische Universität Berlin – Universitätsbibliothek

Version des Datensatzes

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents' prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

collective opinion dynamics, heterogeneity, uncertainty, consensus, network science, kollektive Meinungsdynamik, Heterogenität, Netzwerkwissenschaft

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Leveraging uncertainty in collective opinion dynamics with heterogeneity
(2024) Mengers, Vito; Raoufi, Mohsen; Brock, Oliver; Hamann, Heiko; Romanczuk, Pawel
Erschienen in: Scientific Reports. Springer. 2024, 14, 27314. eISSN 2045-2322. Verfügbar unter: doi: 10.1038/s41598-024-78856-8
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690RAOUFI, Mohsen, Vito MENGERS, Oliver BROCK, Heiko HAMANN, Pawel ROMANCZUK, 2024. Dataset: Leveraging Uncertainty in Collective Opinion Dynamics with Heterogeneity
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71932">
    <dc:language>eng</dc:language>
    <dc:creator>Mengers, Vito</dc:creator>
    <dc:creator>Hamann, Heiko</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-16T13:51:50Z</dc:date>
    <dc:creator>Raoufi, Mohsen</dc:creator>
    <dcterms:abstract>Natural and artificial collectives exhibit heterogeneities across different dimensions, contributing to the complexity of their behavior. We investigate the effect of two such heterogeneities on collective opinion dynamics: heterogeneity of the quality of agents' prior information and of degree centrality in the network. To study these heterogeneities, we introduce uncertainty as an additional dimension to the consensus opinion dynamics model, and consider a spectrum of heterogeneous networks with varying centrality. By quantifying and updating the uncertainty using Bayesian inference, we provide a mechanism for each agent to adaptively weigh their individual against social information. We observe that uncertainties develop throughout the interaction between agents, and capture information on heterogeneities. Therefore, we use uncertainty as an additional observable and show the bidirectional relation between centrality and information quality. In extensive simulations on heterogeneous opinion dynamics with Gaussian uncertainties, we demonstrate that uncertainty-driven adaptive weighting leads to increased accuracy and speed of consensus, especially with increasing heterogeneity. We also show the detrimental effect of overconfident central agents on consensus accuracy which can pose challenges in designing such systems. The opportunities for improved performance and observablility suggest the importance of considering uncertainty both for the study of natural and the design of artificial heterogeneous systems.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:rights>Creative Commons Attribution 4.0 International</dc:rights>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-11T09:30:29.000Z</dcterms:created>
    <dc:contributor>Romanczuk, Pawel</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dc:creator>Romanczuk, Pawel</dc:creator>
    <dcterms:title>Dataset: Leveraging Uncertainty in Collective Opinion Dynamics with Heterogeneity</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/71932"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-16T13:51:50Z</dcterms:available>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dcterms:issued>2024</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Hamann, Heiko</dc:contributor>
    <dc:contributor>Technische Universität Berlin</dc:contributor>
    <dc:contributor>Mengers, Vito</dc:contributor>
    <dc:contributor>Raoufi, Mohsen</dc:contributor>
    <dc:creator>Brock, Oliver</dc:creator>
    <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dc:contributor>Brock, Oliver</dc:contributor>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Diese Publikation teilen