Publikation:

Earthquake Investigation and Visual Cognizance of Multivariate Temporal Tabular Data Using Machine Learning

Lade...
Vorschaubild

Dateien

Majumdar_2-mhs0mhnlkpvf3.pdf
Majumdar_2-mhs0mhnlkpvf3.pdfGröße: 77.98 KBDownloads: 273

Datum

2019

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

CHANG, Remco, ed., Daniel A. KEIM, ed., Ross MACIEJEWSKI, ed.. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings. Piscataway, NJ: IEEE, 2019, pp. 136-137. ISBN 978-1-72812-284-7

Zusammenfassung

This paper presents our tool for the Vast Challenge 2019 Mini Challenge 1 (MC1). It will give an overview of the approach of data preprocessing techniques used for the given dataset and it will introduce our application which is built considering the requirements and questions to be answered for the MC1. This application consists of Machine Learning techniques and Information Visualization techniques such as Integrated Spatial Uncertainty Visualization as shown in this paper [1] to convey the needed information to the end users. To show the usefulness of this application we give examples of analysis.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Machine Learning, Visual Analytics

Konferenz

2019 IEEE Conference on Visual Analytics Science and Technology (VAST), 20. Okt. 2019 - 25. Okt. 2019, Vancouver, BC, Canada
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690MAJUMDAR, Arjun, Gent YMERI, Sebastian STRUMBELJ, Juri F. BUCHMÜLLER, Udo SCHLEGEL, Daniel A. KEIM, 2019. Earthquake Investigation and Visual Cognizance of Multivariate Temporal Tabular Data Using Machine Learning. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST). Vancouver, BC, Canada, 20. Okt. 2019 - 25. Okt. 2019. In: CHANG, Remco, ed., Daniel A. KEIM, ed., Ross MACIEJEWSKI, ed.. 2019 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings. Piscataway, NJ: IEEE, 2019, pp. 136-137. ISBN 978-1-72812-284-7
BibTex
@inproceedings{Majumdar2019Earth-50591,
  year={2019},
  title={Earthquake Investigation and Visual Cognizance of Multivariate Temporal Tabular Data Using Machine Learning},
  isbn={978-1-72812-284-7},
  publisher={IEEE},
  address={Piscataway, NJ},
  booktitle={2019 IEEE Conference on Visual Analytics Science and Technology (VAST) : Proceedings},
  pages={136--137},
  editor={Chang, Remco and Keim, Daniel A. and Maciejewski, Ross},
  author={Majumdar, Arjun and Ymeri, Gent and Strumbelj, Sebastian and Buchmüller, Juri F. and Schlegel, Udo and Keim, Daniel A.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/50591">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Keim, Daniel A.</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-27T09:52:20Z</dcterms:available>
    <dc:creator>Strumbelj, Sebastian</dc:creator>
    <dcterms:abstract xml:lang="eng">This paper presents our tool for the Vast Challenge 2019 Mini Challenge 1 (MC1). It will give an overview of the approach of data preprocessing techniques used for the given dataset and it will introduce our application which is built considering the requirements and questions to be answered for the MC1. This application consists of Machine Learning techniques and Information Visualization techniques such as Integrated Spatial Uncertainty Visualization as shown in this paper [1] to convey the needed information to the end users. To show the usefulness of this application we give examples of analysis.</dcterms:abstract>
    <dc:contributor>Majumdar, Arjun</dc:contributor>
    <dc:contributor>Ymeri, Gent</dc:contributor>
    <dc:contributor>Strumbelj, Sebastian</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50591"/>
    <dc:language>eng</dc:language>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Majumdar, Arjun</dc:creator>
    <dc:creator>Ymeri, Gent</dc:creator>
    <dc:contributor>Buchmüller, Juri F.</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50591/1/Majumdar_2-mhs0mhnlkpvf3.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Keim, Daniel A.</dc:contributor>
    <dcterms:title>Earthquake Investigation and Visual Cognizance of Multivariate Temporal Tabular Data Using Machine Learning</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Schlegel, Udo</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50591/1/Majumdar_2-mhs0mhnlkpvf3.pdf"/>
    <dc:creator>Buchmüller, Juri F.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-08-27T09:52:20Z</dc:date>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:contributor>Schlegel, Udo</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen