Publikation: Programmable synthetic magnetism and chiral edge states in nano-optomechanical quantum Hall networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Artificial magnetic fields break time-reversal symmetry in engineered materials—also known as metamaterials, enabling robust, topological transport of neutral excitations, much like edge channels facilitate electronic conduction in the integer quantum Hall effect. We experimentally demonstrate the emergence of quantum-Hall-like chiral edge states in optomechanical resonator networks. Synthetic magnetic fields for phononic excitations are induced through laser drives, while cavity optomechanical control allows full reconfigurability of the effective metamaterial response of the networks, including programming of magnetic fluxes in multiple resonator plaquettes. By tuning the interplay between network connectivity and magnetic fields, we demonstrate both flux-sensitive and flux-insensitive localized mechanical states. Scaling up the system creates spectral features that are precursors to Hofstadter butterfly spectra. Site-resolved spectroscopy reveals edge-bulk separation, with stationary phononic distributions signaling chiral edge modes. We directly probe those edge modes in transport measurements to demonstrate a unidirectional acoustic channel. This work unlocks new ways of controlling topological phononic phases at the nanoscale with applications in noise management and information processing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
SLIM, Jesse J., Javier DEL PINO, Ewold VERHAGEN, 2025. Programmable synthetic magnetism and chiral edge states in nano-optomechanical quantum Hall networks. In: Nature Communications. Springer. 2025, 16, 7471. eISSN 2041-1723. Verfügbar unter: doi: 10.1038/s41467-025-62541-zBibTex
@article{Slim2025-08-12Progr-74710,
title={Programmable synthetic magnetism and chiral edge states in nano-optomechanical quantum Hall networks},
year={2025},
doi={10.1038/s41467-025-62541-z},
volume={16},
journal={Nature Communications},
author={Slim, Jesse J. and del Pino, Javier and Verhagen, Ewold},
note={Article Number: 7471}
}RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74710">
<dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74710/1/Slim_2-lc2hltuif0od2.pdf"/>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-07T11:17:52Z</dc:date>
<dcterms:title>Programmable synthetic magnetism and chiral edge states in nano-optomechanical quantum Hall networks</dcterms:title>
<dc:contributor>del Pino, Javier</dc:contributor>
<dcterms:issued>2025-08-12</dcterms:issued>
<dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/74710/1/Slim_2-lc2hltuif0od2.pdf"/>
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:language>eng</dc:language>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
<dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights>
<dcterms:abstract>Artificial magnetic fields break time-reversal symmetry in engineered materials—also known as metamaterials, enabling robust, topological transport of neutral excitations, much like edge channels facilitate electronic conduction in the integer quantum Hall effect. We experimentally demonstrate the emergence of quantum-Hall-like chiral edge states in optomechanical resonator networks. Synthetic magnetic fields for phononic excitations are induced through laser drives, while cavity optomechanical control allows full reconfigurability of the effective metamaterial response of the networks, including programming of magnetic fluxes in multiple resonator plaquettes. By tuning the interplay between network connectivity and magnetic fields, we demonstrate both flux-sensitive and flux-insensitive localized mechanical states. Scaling up the system creates spectral features that are precursors to Hofstadter butterfly spectra. Site-resolved spectroscopy reveals edge-bulk separation, with stationary phononic distributions signaling chiral edge modes. We directly probe those edge modes in transport measurements to demonstrate a unidirectional acoustic channel. This work unlocks new ways of controlling topological phononic phases at the nanoscale with applications in noise management and information processing.</dcterms:abstract>
<dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74710"/>
<dc:contributor>Verhagen, Ewold</dc:contributor>
<dc:contributor>Slim, Jesse J.</dc:contributor>
<dc:creator>Slim, Jesse J.</dc:creator>
<dc:creator>del Pino, Javier</dc:creator>
<dc:creator>Verhagen, Ewold</dc:creator>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-07T11:17:52Z</dcterms:available>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
</rdf:Description>
</rdf:RDF>