Publikation: Semantic Color Mapping : A Pipeline for Assigning Meaningful Colors to Text
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Current visual text analytics applications do not regard color assignment as a prominent design consideration. We argue that there is a need for applying meaningful colors to text, enhancing comprehension and comparability. Hence, in this paper, we present a guideline to facilitate the choice of colors in text visualizations. The semantic color mapping pipeline is derived from literature and experiences in text visualization design and sums up design considerations, lessons learned, and best practices. The proposed pipeline starts by extracting labeled data from raw text, choosing an aggregation level to create an appropriate vector representation, then defining the unit of analysis to project the data into a low-dimensional space, and finally assigning colors based on the selected color space. We argue that applying such a pipeline enhances the understanding of attribute relations in text visualizations, as confirmed by two applications.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
EL-ASSADY, Mennatallah, Rebecca KEHLBECK, Yannick METZ, Udo SCHLEGEL, Rita SEVASTJANOVA, Fabian SPERRLE, Thilo SPINNER, 2022. Semantic Color Mapping : A Pipeline for Assigning Meaningful Colors to Text. 2022 IEEE 4th Workshop on Visualization Guidelines in Research, Design, and Education (VisGuides). Oklahoma City, OK, USA, 22. Okt. 2022. In: 2022 IEEE 4th Workshop on Visualization Guidelines in Research, Design, and Education (VisGuides). Piscataway, NJ: IEEE, 2022, pp. 16-22. ISBN 979-8-3503-9712-3. Available under: doi: 10.1109/visguides57787.2022.00008BibTex
@inproceedings{ElAssady2022-10Seman-67654, year={2022}, doi={10.1109/visguides57787.2022.00008}, title={Semantic Color Mapping : A Pipeline for Assigning Meaningful Colors to Text}, isbn={979-8-3503-9712-3}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={2022 IEEE 4th Workshop on Visualization Guidelines in Research, Design, and Education (VisGuides)}, pages={16--22}, author={El-Assady, Mennatallah and Kehlbeck, Rebecca and Metz, Yannick and Schlegel, Udo and Sevastjanova, Rita and Sperrle, Fabian and Spinner, Thilo} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/67654"> <dcterms:title>Semantic Color Mapping : A Pipeline for Assigning Meaningful Colors to Text</dcterms:title> <dcterms:abstract>Current visual text analytics applications do not regard color assignment as a prominent design consideration. We argue that there is a need for applying meaningful colors to text, enhancing comprehension and comparability. Hence, in this paper, we present a guideline to facilitate the choice of colors in text visualizations. The semantic color mapping pipeline is derived from literature and experiences in text visualization design and sums up design considerations, lessons learned, and best practices. The proposed pipeline starts by extracting labeled data from raw text, choosing an aggregation level to create an appropriate vector representation, then defining the unit of analysis to project the data into a low-dimensional space, and finally assigning colors based on the selected color space. We argue that applying such a pipeline enhances the understanding of attribute relations in text visualizations, as confirmed by two applications.</dcterms:abstract> <dc:creator>Spinner, Thilo</dc:creator> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:creator>Kehlbeck, Rebecca</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/67654"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Sperrle, Fabian</dc:contributor> <dc:creator>Metz, Yannick</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T07:24:55Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Metz, Yannick</dc:contributor> <dc:contributor>Kehlbeck, Rebecca</dc:contributor> <dc:contributor>Spinner, Thilo</dc:contributor> <dcterms:issued>2022-10</dcterms:issued> <dc:contributor>Schlegel, Udo</dc:contributor> <dc:creator>Schlegel, Udo</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:creator>Sperrle, Fabian</dc:creator> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dc:creator>Sevastjanova, Rita</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-08-23T07:24:55Z</dc:date> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>