Effect of oxygen plasma on nanomechanical silicon nitride resonators

No Thumbnail Available
Files
There are no files associated with this item.
Date
2017
Authors
Jachimowicz, Artur
Schalko, Johannes
Sadeghi, Pedram
Sauer, Markus
Foelske-Schmitz, Annette
Schmid, Silvan
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Applied Physics Letters ; 111 (2017), 6. - 063103. - ISSN 0003-6951. - eISSN 1077-3118
Abstract
Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.
Summary in another language
Subject (DDC)
530 Physics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LUHMANN, Niklas, Artur JACHIMOWICZ, Johannes SCHALKO, Pedram SADEGHI, Markus SAUER, Annette FOELSKE-SCHMITZ, Silvan SCHMID, 2017. Effect of oxygen plasma on nanomechanical silicon nitride resonators. In: Applied Physics Letters. 111(6), 063103. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4989775
BibTex
@article{Luhmann2017-08-07Effec-40259,
  year={2017},
  doi={10.1063/1.4989775},
  title={Effect of oxygen plasma on nanomechanical silicon nitride resonators},
  number={6},
  volume={111},
  issn={0003-6951},
  journal={Applied Physics Letters},
  author={Luhmann, Niklas and Jachimowicz, Artur and Schalko, Johannes and Sadeghi, Pedram and Sauer, Markus and Foelske-Schmitz, Annette and Schmid, Silvan},
  note={Article Number: 063103}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40259">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-06T07:23:59Z</dc:date>
    <dc:creator>Sauer, Markus</dc:creator>
    <dc:contributor>Foelske-Schmitz, Annette</dc:contributor>
    <dc:contributor>Jachimowicz, Artur</dc:contributor>
    <dcterms:title>Effect of oxygen plasma on nanomechanical silicon nitride resonators</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40259"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-06T07:23:59Z</dcterms:available>
    <dc:creator>Luhmann, Niklas</dc:creator>
    <dc:creator>Schalko, Johannes</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sadeghi, Pedram</dc:creator>
    <dc:contributor>Luhmann, Niklas</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.</dcterms:abstract>
    <dc:creator>Schmid, Silvan</dc:creator>
    <dc:creator>Jachimowicz, Artur</dc:creator>
    <dc:contributor>Schalko, Johannes</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sadeghi, Pedram</dc:contributor>
    <dc:creator>Foelske-Schmitz, Annette</dc:creator>
    <dc:contributor>Schmid, Silvan</dc:contributor>
    <dc:contributor>Sauer, Markus</dc:contributor>
    <dcterms:issued>2017-08-07</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed