Effect of oxygen plasma on nanomechanical silicon nitride resonators

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2017
Autor:innen
Jachimowicz, Artur
Schalko, Johannes
Sadeghi, Pedram
Sauer, Markus
Foelske-Schmitz, Annette
Schmid, Silvan
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Zusammenfassung

Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
530 Physik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LUHMANN, Niklas, Artur JACHIMOWICZ, Johannes SCHALKO, Pedram SADEGHI, Markus SAUER, Annette FOELSKE-SCHMITZ, Silvan SCHMID, 2017. Effect of oxygen plasma on nanomechanical silicon nitride resonators. In: Applied Physics Letters. 2017, 111(6), 063103. ISSN 0003-6951. eISSN 1077-3118. Available under: doi: 10.1063/1.4989775
BibTex
@article{Luhmann2017-08-07Effec-40259,
  year={2017},
  doi={10.1063/1.4989775},
  title={Effect of oxygen plasma on nanomechanical silicon nitride resonators},
  number={6},
  volume={111},
  issn={0003-6951},
  journal={Applied Physics Letters},
  author={Luhmann, Niklas and Jachimowicz, Artur and Schalko, Johannes and Sadeghi, Pedram and Sauer, Markus and Foelske-Schmitz, Annette and Schmid, Silvan},
  note={Article Number: 063103}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40259">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-06T07:23:59Z</dc:date>
    <dc:creator>Sauer, Markus</dc:creator>
    <dc:contributor>Foelske-Schmitz, Annette</dc:contributor>
    <dc:contributor>Jachimowicz, Artur</dc:contributor>
    <dcterms:title>Effect of oxygen plasma on nanomechanical silicon nitride resonators</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40259"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-10-06T07:23:59Z</dcterms:available>
    <dc:creator>Luhmann, Niklas</dc:creator>
    <dc:creator>Schalko, Johannes</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Sadeghi, Pedram</dc:creator>
    <dc:contributor>Luhmann, Niklas</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Precise control of tensile stress and intrinsic damping is crucial for the optimal design of nanomechanical systems for sensor applications and quantum optomechanics in particular. In this letter, we study the influence of oxygen plasma on the tensile stress and intrinsic damping of nanomechanical silicon nitride resonators. Oxygen plasma treatments are common steps in micro and nanofabrication. We show that oxygen plasma for only a few minutes oxidizes the silicon nitride surface, creating several nanometer thick silicon dioxide layers with a compressive stress of 1.30(16) GPa. Such oxide layers can cause a reduction in the effective tensile stress of a 50 nm thick stoichiometric silicon nitride membrane by almost 50%. Additionally, intrinsic damping linearly increases with the silicon dioxide film thickness. An oxide layer of 1.5 nm grown in just 10 s in a 50 W oxygen plasma almost doubled the intrinsic damping. The oxide surface layer can be efficiently removed in buffered hydrofluoric acid.</dcterms:abstract>
    <dc:creator>Schmid, Silvan</dc:creator>
    <dc:creator>Jachimowicz, Artur</dc:creator>
    <dc:contributor>Schalko, Johannes</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Sadeghi, Pedram</dc:contributor>
    <dc:creator>Foelske-Schmitz, Annette</dc:creator>
    <dc:contributor>Schmid, Silvan</dc:contributor>
    <dc:contributor>Sauer, Markus</dc:contributor>
    <dcterms:issued>2017-08-07</dcterms:issued>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen