The lowest eigenvalue of Jacobi random matrix ensembles and Painlevé VI
The lowest eigenvalue of Jacobi random matrix ensembles and Painlevé VI
No Thumbnail Available
Files
There are no files associated with this item.
Date
2010
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Physics A: Mathematical and Theoretical ; 43 (2010), 40. - 405204. - ISSN 1751-8113. - eISSN 1751-8121
Abstract
We present two complementary methods, each applicable in a different range, to evaluate the distribution of the lowest eigenvalue of random matrices in a Jacobi ensemble. The first method solves an associated Painlevé VI nonlinear differential equation numerically, with suitable initial conditions that we determine. The second method proceeds via constructing the power-series expansion of the Painlevé VI function. Our results are applied in a forthcoming paper in which we model the distribution of the first zero above the central point of elliptic curve L-function families of finite conductor and of conjecturally orthogonal symmetry.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DUEÑEZ, Eduardo, Duc K. HUYNH, Jon P. KEATING, Steven J. MILLER, Nina C. SNAITH, 2010. The lowest eigenvalue of Jacobi random matrix ensembles and Painlevé VI. In: Journal of Physics A: Mathematical and Theoretical. 43(40), 405204. ISSN 1751-8113. eISSN 1751-8121. Available under: doi: 10.1088/1751-8113/43/40/405204BibTex
@article{Duenez2010lowes-25391, year={2010}, doi={10.1088/1751-8113/43/40/405204}, title={The lowest eigenvalue of Jacobi random matrix ensembles and Painlevé VI}, number={40}, volume={43}, issn={1751-8113}, journal={Journal of Physics A: Mathematical and Theoretical}, author={Dueñez, Eduardo and Huynh, Duc K. and Keating, Jon P. and Miller, Steven J. and Snaith, Nina C.}, note={Article Number: 405204} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/25391"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Miller, Steven J.</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Dueñez, Eduardo</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Keating, Jon P.</dc:creator> <dc:contributor>Huynh, Duc K.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-10T11:01:48Z</dc:date> <dc:contributor>Dueñez, Eduardo</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Snaith, Nina C.</dc:contributor> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/25391"/> <dc:contributor>Miller, Steven J.</dc:contributor> <dcterms:issued>2010</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present two complementary methods, each applicable in a different range, to evaluate the distribution of the lowest eigenvalue of random matrices in a Jacobi ensemble. The first method solves an associated Painlevé VI nonlinear differential equation numerically, with suitable initial conditions that we determine. The second method proceeds via constructing the power-series expansion of the Painlevé VI function. Our results are applied in a forthcoming paper in which we model the distribution of the first zero above the central point of elliptic curve L-function families of finite conductor and of conjecturally orthogonal symmetry.</dcterms:abstract> <dc:creator>Snaith, Nina C.</dc:creator> <dcterms:bibliographicCitation>Journal of Physics A : Mathematical and Theoretical ; 43 (2010), 40. - 405204</dcterms:bibliographicCitation> <dcterms:title>The lowest eigenvalue of Jacobi random matrix ensembles and Painlevé VI</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-12-10T11:01:48Z</dcterms:available> <dc:creator>Huynh, Duc K.</dc:creator> <dc:contributor>Keating, Jon P.</dc:contributor> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No