Survey and Experimental Analysis of Event Detection Techniques for Twitter
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2017. Survey and Experimental Analysis of Event Detection Techniques for Twitter. In: The Computer Journal. 2017, 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056BibTex
@article{Weiler2017Surve-37473, year={2017}, doi={10.1093/comjnl/bxw056}, title={Survey and Experimental Analysis of Event Detection Techniques for Twitter}, number={3}, volume={60}, issn={0010-4620}, journal={The Computer Journal}, pages={329--346}, author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37473"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.</dcterms:abstract> <dc:contributor>Scholl, Marc H.</dc:contributor> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>terms-of-use</dc:rights> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:title>Survey and Experimental Analysis of Event Detection Techniques for Twitter</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37473"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Weiler, Andreas</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/> <dc:creator>Scholl, Marc H.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dc:date> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Weiler, Andreas</dc:creator> <dcterms:issued>2017</dcterms:issued> </rdf:Description> </rdf:RDF>