Survey and Experimental Analysis of Event Detection Techniques for Twitter

Lade...
Vorschaubild
Dateien
Weiler_0-370382.pdf
Weiler_0-370382.pdfGröße: 461.39 KBDownloads: 675
Datum
2017
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Computer Journal. 2017, 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056
Zusammenfassung

Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
performance evaluation, event detection, Twitter data streams
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2017. Survey and Experimental Analysis of Event Detection Techniques for Twitter. In: The Computer Journal. 2017, 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056
BibTex
@article{Weiler2017Surve-37473,
  year={2017},
  doi={10.1093/comjnl/bxw056},
  title={Survey and Experimental Analysis of Event Detection Techniques for Twitter},
  number={3},
  volume={60},
  issn={0010-4620},
  journal={The Computer Journal},
  pages={329--346},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37473">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.</dcterms:abstract>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Survey and Experimental Analysis of Event Detection Techniques for Twitter</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37473"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet