Publikation:

Survey and Experimental Analysis of Event Detection Techniques for Twitter

Lade...
Vorschaubild

Dateien

Weiler_0-370382.pdf
Weiler_0-370382.pdfGröße: 461.39 KBDownloads: 852

Datum

2017

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

The Computer Journal. 2017, 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056

Zusammenfassung

Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

performance evaluation, event detection, Twitter data streams

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690WEILER, Andreas, Michael GROSSNIKLAUS, Marc H. SCHOLL, 2017. Survey and Experimental Analysis of Event Detection Techniques for Twitter. In: The Computer Journal. 2017, 60(3), pp. 329-346. ISSN 0010-4620. eISSN 1460-2067. Available under: doi: 10.1093/comjnl/bxw056
BibTex
@article{Weiler2017Surve-37473,
  year={2017},
  doi={10.1093/comjnl/bxw056},
  title={Survey and Experimental Analysis of Event Detection Techniques for Twitter},
  number={3},
  volume={60},
  issn={0010-4620},
  journal={The Computer Journal},
  pages={329--346},
  author={Weiler, Andreas and Grossniklaus, Michael and Scholl, Marc H.}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/37473">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract xml:lang="eng">Twitter's popularity as a source of up-to-date news and information is constantly increasing. In response to this trend, numerous event detection techniques have been proposed to cope with the rate and volume of Twitter data streams. Although most of these works conduct some evaluation of the proposed technique, a comparative study is often omitted. In this paper, we present a survey and experimental analysis of state-of-the-art event detection techniques for Twitter data streams. In order to conduct this study, we define a series of measures to support the quantitative and qualitative comparison. We demonstrate the effectiveness of these measures by applying them to event detection techniques as well as to baseline approaches using real-world Twitter streaming data.</dcterms:abstract>
    <dc:contributor>Scholl, Marc H.</dc:contributor>
    <dc:contributor>Grossniklaus, Michael</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Grossniklaus, Michael</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:title>Survey and Experimental Analysis of Event Detection Techniques for Twitter</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/37473"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Weiler, Andreas</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/37473/1/Weiler_0-370382.pdf"/>
    <dc:creator>Scholl, Marc H.</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-02-16T08:13:47Z</dc:date>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Weiler, Andreas</dc:creator>
    <dcterms:issued>2017</dcterms:issued>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen