A structurally damped plate equation with Dirichlet-Neumann boundary conditions
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We investigate sectoriality and maximal regularity in Lp–Lq-Sobolev spaces for the structurally damped plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C4. It turns out that the first-order system related to the scalar equation on Rn is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
DENK, Robert, Roland SCHNAUBELT, 2015. A structurally damped plate equation with Dirichlet-Neumann boundary conditions. In: Journal of Differential Equations. 2015, 259(4), pp. 1323-1353. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2015.02.043BibTex
@article{Denk2015struc-31760, year={2015}, doi={10.1016/j.jde.2015.02.043}, title={A structurally damped plate equation with Dirichlet-Neumann boundary conditions}, number={4}, volume={259}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={1323--1353}, author={Denk, Robert and Schnaubelt, Roland} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31760"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:34:39Z</dcterms:available> <dcterms:title>A structurally damped plate equation with Dirichlet-Neumann boundary conditions</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31760"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Denk, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:34:39Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Schnaubelt, Roland</dc:creator> <dc:contributor>Schnaubelt, Roland</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We investigate sectoriality and maximal regularity in L<sup>p</sup>–L<sup>q</sup>-Sobolev spaces for the structurally damped plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C<sup>4</sup>. It turns out that the first-order system related to the scalar equation on R<sup>n</sup> is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.</dcterms:abstract> </rdf:Description> </rdf:RDF>