A structurally damped plate equation with Dirichlet-Neumann boundary conditions
A structurally damped plate equation with Dirichlet-Neumann boundary conditions
No Thumbnail Available
Files
There are no files associated with this item.
Date
2015
Authors
Schnaubelt, Roland
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published in
Journal of Differential Equations ; 259 (2015), 4. - pp. 1323-1353. - ISSN 0022-0396. - eISSN 1090-2732
Abstract
We investigate sectoriality and maximal regularity in Lp–Lq-Sobolev spaces for the structurally damped plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C4. It turns out that the first-order system related to the scalar equation on Rn is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Structurally damped plate equation, Clamped boundary condition, R-sectoriality, Optimal regularity, Operator-valued Fourier multipliers, Exponential stability
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DENK, Robert, Roland SCHNAUBELT, 2015. A structurally damped plate equation with Dirichlet-Neumann boundary conditions. In: Journal of Differential Equations. 259(4), pp. 1323-1353. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2015.02.043BibTex
@article{Denk2015struc-31760, year={2015}, doi={10.1016/j.jde.2015.02.043}, title={A structurally damped plate equation with Dirichlet-Neumann boundary conditions}, number={4}, volume={259}, issn={0022-0396}, journal={Journal of Differential Equations}, pages={1323--1353}, author={Denk, Robert and Schnaubelt, Roland} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/31760"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:34:39Z</dcterms:available> <dcterms:title>A structurally damped plate equation with Dirichlet-Neumann boundary conditions</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/31760"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Denk, Robert</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2015-09-16T13:34:39Z</dc:date> <dc:language>eng</dc:language> <dc:creator>Schnaubelt, Roland</dc:creator> <dc:contributor>Schnaubelt, Roland</dc:contributor> <dcterms:issued>2015</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:abstract xml:lang="eng">We investigate sectoriality and maximal regularity in L<sup>p</sup>–L<sup>q</sup>-Sobolev spaces for the structurally damped plate equation with Dirichlet–Neumann (clamped) boundary conditions. We obtain unique solutions with optimal regularity for the inhomogeneous problem in the whole space, in the half-space, and in bounded domains of class C<sup>4</sup>. It turns out that the first-order system related to the scalar equation on R<sup>n</sup> is sectorial only after a shift in the operator. On the half-space one has to include zero boundary conditions in the underlying function space in order to obtain sectoriality of the shifted operator and maximal regularity for the case of homogeneous boundary conditions. We further show that the semigroup solving the problem on bounded domains is exponentially stable.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes