The universal covering homomorphism in o-minimal expansions of groups
Lade...
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2007
Autor:innen
Edmundo, Mário J.
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Mathematical Logic Quarterly. Wiley-Blackwell - STM. 2007, 53(6), pp. 571-582. ISSN 0942-5616. eISSN 1521-3870. Available under: doi: 10.1002/malq.200610051
Zusammenfassung
Suppose G is a definably connected, definable group in an o-minimal expansion of an ordered group. We show that the o-minimal universal covering homomorphism $ \tilde p $: $ \tilde G $→ G is a locally definable covering homomorphism and π1(G) is isomorphic to the o-minimal fundamental group π (G) of G defined using locally definable covering homomorphisms.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
O-minimal structures,universal covers
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
EDMUNDO, Mário J., Pantelis E. ELEFTHERIOU, 2007. The universal covering homomorphism in o-minimal expansions of groups. In: Mathematical Logic Quarterly. Wiley-Blackwell - STM. 2007, 53(6), pp. 571-582. ISSN 0942-5616. eISSN 1521-3870. Available under: doi: 10.1002/malq.200610051BibTex
@article{Edmundo2007-11unive-49508, year={2007}, doi={10.1002/malq.200610051}, title={The universal covering homomorphism in o-minimal expansions of groups}, number={6}, volume={53}, issn={0942-5616}, journal={Mathematical Logic Quarterly}, pages={571--582}, author={Edmundo, Mário J. and Eleftheriou, Pantelis E.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/49508"> <dc:language>eng</dc:language> <dcterms:title>The universal covering homomorphism in o-minimal expansions of groups</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-15T09:09:32Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Eleftheriou, Pantelis E.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49508"/> <dcterms:issued>2007-11</dcterms:issued> <dc:contributor>Edmundo, Mário J.</dc:contributor> <dc:creator>Eleftheriou, Pantelis E.</dc:creator> <dc:creator>Edmundo, Mário J.</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-05-15T09:09:32Z</dc:date> <dcterms:abstract xml:lang="eng">Suppose G is a definably connected, definable group in an o-minimal expansion of an ordered group. We show that the o-minimal universal covering homomorphism <UEQN>$ \tilde p $</UEQN>: <UEQN>$ \tilde G $</UEQN>→ G is a locally definable covering homomorphism and π1(G) is isomorphic to the o-minimal fundamental group π (G) of G defined using locally definable covering homomorphisms.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Ja