Reduced order modeling and parameter identification for coupled nonlinear PDE systems
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this work mathematical systems arising from the modeling of lithium ion batteries are investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LASS, Oliver, 2014. Reduced order modeling and parameter identification for coupled nonlinear PDE systems [Dissertation]. Konstanz: University of KonstanzBibTex
@phdthesis{Lass2014Reduc-27281, year={2014}, title={Reduced order modeling and parameter identification for coupled nonlinear PDE systems}, author={Lass, Oliver}, address={Konstanz}, school={Universität Konstanz} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27281"> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2014</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dc:date> <dcterms:abstract xml:lang="eng">In this work mathematical systems arising from the modeling of lithium ion batteries are investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Lass, Oliver</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27281"/> <dc:language>eng</dc:language> <dc:contributor>Lass, Oliver</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Reduced order modeling and parameter identification for coupled nonlinear PDE systems</dcterms:title> </rdf:Description> </rdf:RDF>