Publikation:

Reduced order modeling and parameter identification for coupled nonlinear PDE systems

Lade...
Vorschaubild

Dateien

Lass_272816.pdf
Lass_272816.pdfGröße: 18.24 MBDownloads: 481

Datum

2014

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Dissertation
Publikationsstatus
Published

Erschienen in

Zusammenfassung

In this work mathematical systems arising from the modeling of lithium ion batteries are investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
510 Mathematik

Schlagwörter

Nonlinear elliptic-parabolic systems, Parameter estimation, Model reduction, Proper orthogonal decomposition, Empirical interpolation

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Zugehörige Datensätze in KOPS

Zitieren

ISO 690LASS, Oliver, 2014. Reduced order modeling and parameter identification for coupled nonlinear PDE systems [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Lass2014Reduc-27281,
  year={2014},
  title={Reduced order modeling and parameter identification for coupled nonlinear PDE systems},
  author={Lass, Oliver},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27281">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dc:date>
    <dcterms:abstract xml:lang="eng">In this work mathematical systems arising from the modeling of lithium ion batteries are  investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lass, Oliver</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27281"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Lass, Oliver</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Reduced order modeling and parameter identification for coupled nonlinear PDE systems</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

February 21, 2014
Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen