Reduced order modeling and parameter identification for coupled nonlinear PDE systems

Lade...
Vorschaubild
Dateien
Lass_272816.pdf
Lass_272816.pdfGröße: 18.24 MBDownloads: 443
Datum
2014
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In this work mathematical systems arising from the modeling of lithium ion batteries are investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Nonlinear elliptic-parabolic systems, Parameter estimation, Model reduction, Proper orthogonal decomposition, Empirical interpolation
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690LASS, Oliver, 2014. Reduced order modeling and parameter identification for coupled nonlinear PDE systems [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Lass2014Reduc-27281,
  year={2014},
  title={Reduced order modeling and parameter identification for coupled nonlinear PDE systems},
  author={Lass, Oliver},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/27281">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2014</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dc:date>
    <dcterms:abstract xml:lang="eng">In this work mathematical systems arising from the modeling of lithium ion batteries are  investigated. These models are expressed in terms of highly nonlinear and coupled partial differential equations (PDEs) of different types. There are several parameters in the PDE system which are not known a-priori or which cannot be determined experimentally. Hence, efficient numerical algorithms to estimate unknown parameters are needed. For this purpose a parameter identification problem is formulated as a nonlinear least squares problem. To investigate the parameter depending behavior of the nonlinear system output a sensitivity analysis is carried out. By utilizing a subset selection method the relevant parameters for the optimization process are determined. To speed up the optimization algorithms a model reduction approach based on proper orthogonal decomposition (POD) is applied. Different techniques for the realization of the reduced order models and the parameter estimation are discussed. Numerical examples are presented to illustrate the efficiency of the proposed methods.</dcterms:abstract>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Lass, Oliver</dc:creator>
    <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/27281"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Lass, Oliver</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/27281/2/Lass_272816.pdf"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-03-26T07:36:40Z</dcterms:available>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Reduced order modeling and parameter identification for coupled nonlinear PDE systems</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
February 21, 2014
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Nein
Begutachtet
Diese Publikation teilen