Publikation:

A Pareto Dominance Principle for Data-Driven Optimization

Lade...
Vorschaubild

Dateien

Zu diesem Dokument gibt es keine Dateien.

Datum

2024

Autor:innen

Van Parys, Bart P. G.
Kuhn, Daniel

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

URI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Angaben zur Forschungsförderung

Swiss National Science Foundation: 51NF40_180545

Projekt

Open Access-Veröffentlichung
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published

Erschienen in

Operations Research. Institute for Operations Research and the Management Sciences (INFORMS). 2024, 72(5), S. 1976-1999. ISSN 0030-364X. eISSN 1526-5463. Verfügbar unter: doi: 10.1287/opre.2021.0609

Zusammenfassung

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample risk. An additional quality measure is its out-of-sample disappointment, which we define as the probability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. The crux of data-driven optimization is that the data-generating probability measure is unknown. An ideal data-driven decision should therefore minimize the out-of-sample risk simultaneously with respect to every conceivable probability measure (and thus in particular with respect to the unknown true measure). Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-driven decisions that minimize the in-sample risk subject to an upper bound on the out-of-sample disappointment—again simultaneously with respect to every conceivable probability measure. We prove that such Pareto dominant data-driven decisions exist under conditions that allow for interesting applications: The unknown data-generating probability measure must belong to a parametric ambiguity set, and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation principle. If these conditions hold, we can further prove that the surrogate optimization model generating the optimal data-driven decision must be a distributionally robust optimization problem constructed from the sufficient statistic and the rate function of its large deviation principle. This shows that the optimal method for mapping data to decisions is, in a rigorous statistical sense, to solve a distributionally robust optimization model. Maybe surprisingly, this result holds irrespective of whether the original stochastic optimization problem is convex or not and holds even when the training data are not independent and identically distributed. As a byproduct, our analysis reveals how the structural properties of the data-generating stochastic process impact the shape of the ambiguity set underlying the optimal distributionally robust optimization model.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

data-driven decision making, stochastic optimization, robust optimization, large deviations

Konferenz

Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690SUTTER, Tobias, Bart P. G. VAN PARYS, Daniel KUHN, 2024. A Pareto Dominance Principle for Data-Driven Optimization. In: Operations Research. Institute for Operations Research and the Management Sciences (INFORMS). 2024, 72(5), S. 1976-1999. ISSN 0030-364X. eISSN 1526-5463. Verfügbar unter: doi: 10.1287/opre.2021.0609
BibTex
@article{Sutter2024-09Paret-69183,
  year={2024},
  doi={10.1287/opre.2021.0609},
  title={A Pareto Dominance Principle for Data-Driven Optimization},
  number={5},
  volume={72},
  issn={0030-364X},
  journal={Operations Research},
  pages={1976--1999},
  author={Sutter, Tobias and Van Parys, Bart P. G. and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69183">
    <dc:contributor>Van Parys, Bart P. G.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:11:35Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69183"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample risk. An additional quality measure is its out-of-sample disappointment, which we define as the probability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. The crux of data-driven optimization is that the data-generating probability measure is unknown. An ideal data-driven decision should therefore minimize the out-of-sample risk simultaneously with respect to every conceivable probability measure (and thus in particular with respect to the unknown true measure). Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-driven decisions that minimize the in-sample risk subject to an upper bound on the out-of-sample disappointment—again simultaneously with respect to every conceivable probability measure. We prove that such Pareto dominant data-driven decisions exist under conditions that allow for interesting applications: The unknown data-generating probability measure must belong to a parametric ambiguity set, and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation principle. If these conditions hold, we can further prove that the surrogate optimization model generating the optimal data-driven decision must be a distributionally robust optimization problem constructed from the sufficient statistic and the rate function of its large deviation principle. This shows that the optimal method for mapping data to decisions is, in a rigorous statistical sense, to solve a distributionally robust optimization model. Maybe surprisingly, this result holds irrespective of whether the original stochastic optimization problem is convex or not and holds even when the training data are not independent and identically distributed. As a byproduct, our analysis reveals how the structural properties of the data-generating stochastic process impact the shape of the ambiguity set underlying the optimal distributionally robust optimization model.</dcterms:abstract>
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:creator>Van Parys, Bart P. G.</dc:creator>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2024-09</dcterms:issued>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:11:35Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>A Pareto Dominance Principle for Data-Driven Optimization</dcterms:title>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt
URL der Originalveröffentl.

Prüfdatum der URL

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen