A Pareto Dominance Principle for Data-Driven Optimization

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Van Parys, Bart P. G.
Kuhn, Daniel
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Swiss National Science Foundation: 51NF40_180545
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Operations Research. Institute for Operations Research and the Management Sciences (INFORMS). ISSN 0030-364X. eISSN 1526-5463. Available under: doi: 10.1287/opre.2021.0609
Zusammenfassung

We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample risk. An additional quality measure is its out-of-sample disappointment, which we define as the probability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. The crux of data-driven optimization is that the data-generating probability measure is unknown. An ideal data-driven decision should therefore minimize the out-of-sample risk simultaneously with respect to every conceivable probability measure (and thus in particular with respect to the unknown true measure). Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-driven decisions that minimize the in-sample risk subject to an upper bound on the out-of-sample disappointment—again simultaneously with respect to every conceivable probability measure. We prove that such Pareto dominant data-driven decisions exist under conditions that allow for interesting applications: The unknown data-generating probability measure must belong to a parametric ambiguity set, and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation principle. If these conditions hold, we can further prove that the surrogate optimization model generating the optimal data-driven decision must be a distributionally robust optimization problem constructed from the sufficient statistic and the rate function of its large deviation principle. This shows that the optimal method for mapping data to decisions is, in a rigorous statistical sense, to solve a distributionally robust optimization model. Maybe surprisingly, this result holds irrespective of whether the original stochastic optimization problem is convex or not and holds even when the training data are not independent and identically distributed. As a byproduct, our analysis reveals how the structural properties of the data-generating stochastic process impact the shape of the ambiguity set underlying the optimal distributionally robust optimization model.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
data-driven decision making, stochastic optimization, robust optimization, large deviations
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690SUTTER, Tobias, Bart P. G. VAN PARYS, Daniel KUHN, 2024. A Pareto Dominance Principle for Data-Driven Optimization. In: Operations Research. Institute for Operations Research and the Management Sciences (INFORMS). ISSN 0030-364X. eISSN 1526-5463. Available under: doi: 10.1287/opre.2021.0609
BibTex
@article{Sutter2024Paret-69183,
  year={2024},
  doi={10.1287/opre.2021.0609},
  title={A Pareto Dominance Principle for Data-Driven Optimization},
  issn={0030-364X},
  journal={Operations Research},
  author={Sutter, Tobias and Van Parys, Bart P. G. and Kuhn, Daniel}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/69183">
    <dcterms:issued>2024</dcterms:issued>
    <dc:contributor>Van Parys, Bart P. G.</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:11:35Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/69183"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:abstract>We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be expressed as the minimizer of a surrogate optimization model constructed from the data. The quality of a data-driven decision is measured by its out-of-sample risk. An additional quality measure is its out-of-sample disappointment, which we define as the probability that the out-of-sample risk exceeds the optimal value of the surrogate optimization model. The crux of data-driven optimization is that the data-generating probability measure is unknown. An ideal data-driven decision should therefore minimize the out-of-sample risk simultaneously with respect to every conceivable probability measure (and thus in particular with respect to the unknown true measure). Unfortunately, such ideal data-driven decisions are generally unavailable. This prompts us to seek data-driven decisions that minimize the in-sample risk subject to an upper bound on the out-of-sample disappointment—again simultaneously with respect to every conceivable probability measure. We prove that such Pareto dominant data-driven decisions exist under conditions that allow for interesting applications: The unknown data-generating probability measure must belong to a parametric ambiguity set, and the corresponding parameters must admit a sufficient statistic that satisfies a large deviation principle. If these conditions hold, we can further prove that the surrogate optimization model generating the optimal data-driven decision must be a distributionally robust optimization problem constructed from the sufficient statistic and the rate function of its large deviation principle. This shows that the optimal method for mapping data to decisions is, in a rigorous statistical sense, to solve a distributionally robust optimization model. Maybe surprisingly, this result holds irrespective of whether the original stochastic optimization problem is convex or not and holds even when the training data are not independent and identically distributed. As a byproduct, our analysis reveals how the structural properties of the data-generating stochastic process impact the shape of the ambiguity set underlying the optimal distributionally robust optimization model.</dcterms:abstract>
    <dc:contributor>Kuhn, Daniel</dc:contributor>
    <dc:contributor>Sutter, Tobias</dc:contributor>
    <dc:creator>Sutter, Tobias</dc:creator>
    <dc:creator>Van Parys, Bart P. G.</dc:creator>
    <dc:creator>Kuhn, Daniel</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:language>eng</dc:language>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-01-26T09:11:35Z</dc:date>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:title>A Pareto Dominance Principle for Data-Driven Optimization</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen