XplaiNLI : Explainable Natural Language Inference through Visual Analytics

Lade...
Vorschaubild
Dateien
Kalouli_2-1io2p3cckids5.pdf
Kalouli_2-1io2p3cckids5.pdfGröße: 453.18 KBDownloads: 297
Datum
2020
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
PTASZYNSKI, Michal, ed., Bartosz ZIOLKO, ed.. Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations. Stroudsburg, PA: ACL, 2020, pp. 48-52. ISBN 978-1-952148-28-6
Zusammenfassung

Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
28th International Conference on Computational Linguistics : System Demonstrations, 8. Dez. 2020 - 13. Dez. 2020, Barcelona
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690KALOULI, Aikaterini-Lida, Rita SEVASTJANOVA, Valeria DE PAIVA, Richard CROUCH, Mennatallah EL-ASSADY, 2020. XplaiNLI : Explainable Natural Language Inference through Visual Analytics. 28th International Conference on Computational Linguistics : System Demonstrations. Barcelona, 8. Dez. 2020 - 13. Dez. 2020. In: PTASZYNSKI, Michal, ed., Bartosz ZIOLKO, ed.. Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations. Stroudsburg, PA: ACL, 2020, pp. 48-52. ISBN 978-1-952148-28-6
BibTex
@inproceedings{Kalouli2020Xplai-53009,
  year={2020},
  title={XplaiNLI : Explainable Natural Language Inference through Visual Analytics},
  url={https://www.aclweb.org/anthology/2020.coling-demos.9/},
  isbn={978-1-952148-28-6},
  publisher={ACL},
  address={Stroudsburg, PA},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations},
  pages={48--52},
  editor={Ptaszynski, Michal and Ziolko, Bartosz},
  author={Kalouli, Aikaterini-Lida and Sevastjanova, Rita and de Paiva, Valeria and Crouch, Richard and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53009">
    <dcterms:abstract xml:lang="eng">Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.</dcterms:abstract>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor>
    <dc:creator>Crouch, Richard</dc:creator>
    <dcterms:title>XplaiNLI : Explainable Natural Language Inference through Visual Analytics</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>de Paiva, Valeria</dc:creator>
    <dc:creator>Kalouli, Aikaterini-Lida</dc:creator>
    <dc:contributor>Crouch, Richard</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>de Paiva, Valeria</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53009"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
Prüfdatum der URL
2020-12-15
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen