XplaiNLI : Explainable Natural Language Inference through Visual Analytics
XplaiNLI : Explainable Natural Language Inference through Visual Analytics
Loading...
Date
2020
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations / Ptaszynski, Michal; Ziolko, Bartosz (ed.). - Stroudsburg, PA : ACL, 2020. - pp. 48-52. - ISBN 978-1-952148-28-6
Abstract
Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Conference
28th International Conference on Computational Linguistics : System Demonstrations, Dec 8, 2020 - Dec 13, 2020, Barcelona
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KALOULI, Aikaterini-Lida, Rita SEVASTJANOVA, Valeria DE PAIVA, Richard CROUCH, Mennatallah EL-ASSADY, 2020. XplaiNLI : Explainable Natural Language Inference through Visual Analytics. 28th International Conference on Computational Linguistics : System Demonstrations. Barcelona, Dec 8, 2020 - Dec 13, 2020. In: PTASZYNSKI, Michal, ed., Bartosz ZIOLKO, ed.. Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations. Stroudsburg, PA:ACL, pp. 48-52. ISBN 978-1-952148-28-6BibTex
@inproceedings{Kalouli2020Xplai-53009, year={2020}, title={XplaiNLI : Explainable Natural Language Inference through Visual Analytics}, url={https://www.aclweb.org/anthology/2020.coling-demos.9/}, isbn={978-1-952148-28-6}, publisher={ACL}, address={Stroudsburg, PA}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations}, pages={48--52}, editor={Ptaszynski, Michal and Ziolko, Bartosz}, author={Kalouli, Aikaterini-Lida and Sevastjanova, Rita and de Paiva, Valeria and Crouch, Richard and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53009"> <dcterms:abstract xml:lang="eng">Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.</dcterms:abstract> <dc:creator>Sevastjanova, Rita</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor> <dc:creator>Crouch, Richard</dc:creator> <dcterms:title>XplaiNLI : Explainable Natural Language Inference through Visual Analytics</dcterms:title> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:contributor>Sevastjanova, Rita</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>de Paiva, Valeria</dc:creator> <dc:creator>Kalouli, Aikaterini-Lida</dc:creator> <dc:contributor>Crouch, Richard</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:contributor>de Paiva, Valeria</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53009"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
URL of original publication
Test date of URL
2020-12-15
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes