Publikation:

XplaiNLI : Explainable Natural Language Inference through Visual Analytics

Lade...
Vorschaubild

Dateien

Kalouli_2-1io2p3cckids5.pdf
Kalouli_2-1io2p3cckids5.pdfGröße: 453.18 KBDownloads: 309

Datum

2020

Autor:innen

Herausgeber:innen

Kontakt

ISSN der Zeitschrift

Electronic ISSN

ISBN

Bibliografische Daten

Verlag

Schriftenreihe

Auflagebezeichnung

DOI (zitierfähiger Link)
ArXiv-ID

Internationale Patentnummer

Link zur Lizenz

Angaben zur Forschungsförderung

Projekt

Open Access-Veröffentlichung
Open Access Bookpart
Core Facility der Universität Konstanz

Gesperrt bis

Titel in einer weiteren Sprache

Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published

Erschienen in

PTASZYNSKI, Michal, ed., Bartosz ZIOLKO, ed.. Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations. Stroudsburg, PA: ACL, 2020, pp. 48-52. ISBN 978-1-952148-28-6

Zusammenfassung

Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Konferenz

28th International Conference on Computational Linguistics : System Demonstrations, 8. Dez. 2020 - 13. Dez. 2020, Barcelona
Rezension
undefined / . - undefined, undefined

Forschungsvorhaben

Organisationseinheiten

Zeitschriftenheft

Verknüpfte Datensätze

Zitieren

ISO 690KALOULI, Aikaterini-Lida, Rita SEVASTJANOVA, Valeria DE PAIVA, Richard CROUCH, Mennatallah EL-ASSADY, 2020. XplaiNLI : Explainable Natural Language Inference through Visual Analytics. 28th International Conference on Computational Linguistics : System Demonstrations. Barcelona, 8. Dez. 2020 - 13. Dez. 2020. In: PTASZYNSKI, Michal, ed., Bartosz ZIOLKO, ed.. Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations. Stroudsburg, PA: ACL, 2020, pp. 48-52. ISBN 978-1-952148-28-6
BibTex
@inproceedings{Kalouli2020Xplai-53009,
  year={2020},
  title={XplaiNLI : Explainable Natural Language Inference through Visual Analytics},
  url={https://www.aclweb.org/anthology/2020.coling-demos.9/},
  isbn={978-1-952148-28-6},
  publisher={ACL},
  address={Stroudsburg, PA},
  booktitle={Proceedings of the 28th International Conference on Computational Linguistics : System Demonstrations},
  pages={48--52},
  editor={Ptaszynski, Michal and Ziolko, Bartosz},
  author={Kalouli, Aikaterini-Lida and Sevastjanova, Rita and de Paiva, Valeria and Crouch, Richard and El-Assady, Mennatallah}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53009">
    <dcterms:abstract xml:lang="eng">Advances in Natural Language Inference (NLI) have helped us understand what state-of-the-art models really learn and what their generalization power is. Recent research has revealed some heuristics and biases of these models. However, to date, there is no systematic effort to capitalize on those insights through a system that uses these to explain the NLI decisions. To this end, we propose XplaiNLI, an eXplainable, interactive, visualization interface that computes NLI with different methods and provides explanations for the decisions made by the different approaches.</dcterms:abstract>
    <dc:creator>Sevastjanova, Rita</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dc:date>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Kalouli, Aikaterini-Lida</dc:contributor>
    <dc:creator>Crouch, Richard</dc:creator>
    <dcterms:title>XplaiNLI : Explainable Natural Language Inference through Visual Analytics</dcterms:title>
    <dc:contributor>El-Assady, Mennatallah</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>El-Assady, Mennatallah</dc:creator>
    <dc:contributor>Sevastjanova, Rita</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53009/1/Kalouli_2-1io2p3cckids5.pdf"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>de Paiva, Valeria</dc:creator>
    <dc:creator>Kalouli, Aikaterini-Lida</dc:creator>
    <dc:contributor>Crouch, Richard</dc:contributor>
    <dcterms:issued>2020</dcterms:issued>
    <dc:contributor>de Paiva, Valeria</dc:contributor>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53009"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-26T09:02:34Z</dcterms:available>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/45"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
  </rdf:Description>
</rdf:RDF>

Interner Vermerk

xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter

Kontakt

Prüfdatum der URL

2020-12-15

Prüfungsdatum der Dissertation

Finanzierungsart

Kommentar zur Publikation

Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen