Relational hyperevent models for the coevolution of coauthoring and citation networks
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Swiss National Science Foundation: 100013_192549
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The development of appropriate statistical models has lagged behind the ambitions of empirical studies analysing large scientific networks—systems of publications connected by citations and authorship. Extant research typically focuses on either paper citation networks or author collaboration networks. However, these networks involve both direct relationships, as well as broader dependencies between references linked by multiple citation paths. In this work, we extend recently developed relational hyperevent models to analyse networks characterized by complex dependencies across multiple network modes. We introduce new covariates to represent theoretically relevant and empirically plausible mixed-mode network configurations. This model specification allows testing hypotheses that recognize the polyadic nature of publication data, while accounting for multiple dependencies linking authors and references of current and prior papers. We implement the model using open-source software to analyse publicly available data on a large scientific network. Our findings reveal a tendency for subsets of papers to be cocited, indicating that the impact of these papers may be partly due to endogenous network processes. More broadly, the analysis shows that models accounting for both the hyperedge structure of publication events and the interconnections between authors and references significantly enhance our understanding of the mechanisms driving scientific production and impact.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LERNER, Jürgen, Marian-Gabriel HÂNCEAN, Alessandro LOMI, 2024. Relational hyperevent models for the coevolution of coauthoring and citation networks. In: Journal of the Royal Statistical Society Series A : Statistics in Society. Oxford University Press. ISSN 0964-1998. eISSN 1467-985X. Verfügbar unter: doi: 10.1093/jrsssa/qnae068BibTex
@article{Lerner2024-07-23Relat-70827, year={2024}, doi={10.1093/jrsssa/qnae068}, title={Relational hyperevent models for the coevolution of coauthoring and citation networks}, issn={0964-1998}, journal={Journal of the Royal Statistical Society Series A : Statistics in Society}, author={Lerner, Jürgen and Hâncean, Marian-Gabriel and Lomi, Alessandro} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70827"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2024-07-23</dcterms:issued> <dc:language>eng</dc:language> <dc:creator>Lerner, Jürgen</dc:creator> <dc:contributor>Lerner, Jürgen</dc:contributor> <dcterms:abstract>The development of appropriate statistical models has lagged behind the ambitions of empirical studies analysing large scientific networks—systems of publications connected by citations and authorship. Extant research typically focuses on either paper citation networks or author collaboration networks. However, these networks involve both direct relationships, as well as broader dependencies between references linked by multiple citation paths. In this work, we extend recently developed relational hyperevent models to analyse networks characterized by complex dependencies across multiple network modes. We introduce new covariates to represent theoretically relevant and empirically plausible mixed-mode network configurations. This model specification allows testing hypotheses that recognize the polyadic nature of publication data, while accounting for multiple dependencies linking authors and references of current and prior papers. We implement the model using open-source software to analyse publicly available data on a large scientific network. Our findings reveal a tendency for subsets of papers to be cocited, indicating that the impact of these papers may be partly due to endogenous network processes. More broadly, the analysis shows that models accounting for both the hyperedge structure of publication events and the interconnections between authors and references significantly enhance our understanding of the mechanisms driving scientific production and impact.</dcterms:abstract> <dc:creator>Hâncean, Marian-Gabriel</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Lomi, Alessandro</dc:creator> <dc:contributor>Hâncean, Marian-Gabriel</dc:contributor> <dc:contributor>Lomi, Alessandro</dc:contributor> <dcterms:title>Relational hyperevent models for the coevolution of coauthoring and citation networks</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70827"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T10:04:49Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T10:04:49Z</dc:date> <dc:rights>Attribution 4.0 International</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>