Relational hyperevent models for the coevolution of coauthoring and citation networks

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Hâncean, Marian-Gabriel
Lomi, Alessandro
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Deutsche Forschungsgemeinschaft (DFG): 321869138
Swiss National Science Foundation: 100013_192549
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of the Royal Statistical Society Series A : Statistics in Society. Oxford University Press. ISSN 0964-1998. eISSN 1467-985X. Verfügbar unter: doi: 10.1093/jrsssa/qnae068
Zusammenfassung

The development of appropriate statistical models has lagged behind the ambitions of empirical studies analysing large scientific networks—systems of publications connected by citations and authorship. Extant research typically focuses on either paper citation networks or author collaboration networks. However, these networks involve both direct relationships, as well as broader dependencies between references linked by multiple citation paths. In this work, we extend recently developed relational hyperevent models to analyse networks characterized by complex dependencies across multiple network modes. We introduce new covariates to represent theoretically relevant and empirically plausible mixed-mode network configurations. This model specification allows testing hypotheses that recognize the polyadic nature of publication data, while accounting for multiple dependencies linking authors and references of current and prior papers. We implement the model using open-source software to analyse publicly available data on a large scientific network. Our findings reveal a tendency for subsets of papers to be cocited, indicating that the impact of these papers may be partly due to endogenous network processes. More broadly, the analysis shows that models accounting for both the hyperedge structure of publication events and the interconnections between authors and references significantly enhance our understanding of the mechanisms driving scientific production and impact.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
citation networks, coauthoring networks, network dynamics, relational event models, hypergraphs, science of science
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690LERNER, Jürgen, Marian-Gabriel HÂNCEAN, Alessandro LOMI, 2024. Relational hyperevent models for the coevolution of coauthoring and citation networks. In: Journal of the Royal Statistical Society Series A : Statistics in Society. Oxford University Press. ISSN 0964-1998. eISSN 1467-985X. Verfügbar unter: doi: 10.1093/jrsssa/qnae068
BibTex
@article{Lerner2024-07-23Relat-70827,
  year={2024},
  doi={10.1093/jrsssa/qnae068},
  title={Relational hyperevent models for the coevolution of coauthoring and citation networks},
  issn={0964-1998},
  journal={Journal of the Royal Statistical Society Series A : Statistics in Society},
  author={Lerner, Jürgen and Hâncean, Marian-Gabriel and Lomi, Alessandro}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70827">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:issued>2024-07-23</dcterms:issued>
    <dc:language>eng</dc:language>
    <dc:creator>Lerner, Jürgen</dc:creator>
    <dc:contributor>Lerner, Jürgen</dc:contributor>
    <dcterms:abstract>The development of appropriate statistical models has lagged behind the ambitions of empirical studies analysing large scientific networks—systems of publications connected by citations and authorship. Extant research typically focuses on either paper citation networks or author collaboration networks. However, these networks involve both direct relationships, as well as broader dependencies between references linked by multiple citation paths. In this work, we extend recently developed relational hyperevent models to analyse networks characterized by complex dependencies across multiple network modes. We introduce new covariates to represent theoretically relevant and empirically plausible mixed-mode network configurations. This model specification allows testing hypotheses that recognize the polyadic nature of publication data, while accounting for multiple dependencies linking authors and references of current and prior papers. We implement the model using open-source software to analyse publicly available data on a large scientific network. Our findings reveal a tendency for subsets of papers to be cocited, indicating that the impact of these papers may be partly due to endogenous network processes. More broadly, the analysis shows that models accounting for both the hyperedge structure of publication events and the interconnections between authors and references significantly enhance our understanding of the mechanisms driving scientific production and impact.</dcterms:abstract>
    <dc:creator>Hâncean, Marian-Gabriel</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:creator>Lomi, Alessandro</dc:creator>
    <dc:contributor>Hâncean, Marian-Gabriel</dc:contributor>
    <dc:contributor>Lomi, Alessandro</dc:contributor>
    <dcterms:title>Relational hyperevent models for the coevolution of coauthoring and citation networks</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70827"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T10:04:49Z</dcterms:available>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-09-19T10:04:49Z</dc:date>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Link zu Forschungsdaten
Beschreibung der Forschungsdaten
data and code for preprocessing and analysis, as well as instructions on how to use this code
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen