The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Machine learning (ML)-based content moderation tools are essential to keep online spaces free from hateful communication. Yet ML tools can only be as capable as the quality of the data they are trained on allows them. While there is increasing evidence that they underperform in detecting hateful communications directed towards specific identities and may discriminate against them, we know surprisingly little about the provenance of such bias. To fill this gap, we present a systematic review of the datasets for the automated detection of hateful communication introduced over the past decade, and unpack the quality of the datasets in terms of the identities that they embody: those of the targets of hateful communication that the data curators focused on, as well as those unintentionally included in the datasets. We find, overall, a skewed representation of selected target identities and mismatches between the targets that research conceptualizes and ultimately includes in datasets. Yet, by contextualizing these findings in the language and location of origin of the datasets, we highlight a positive trend towards the broadening and diversification of this research space.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
YU, Zehui, Indira SEN, Dennis ASSENMACHER, Mattia SAMORY, Leon FRÖHLING, Christina DAHN, Debora NOZZA, Claudia WAGNER, 2024. The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets. In: Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Verfügbar unter: doi: 10.1177/08944393241258771BibTex
@article{Yu2024-06-13Unsee-70309, year={2024}, doi={10.1177/08944393241258771}, title={The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets}, issn={0894-4393}, journal={Social Science Computer Review}, author={Yu, Zehui and Sen, Indira and Assenmacher, Dennis and Samory, Mattia and Fröhling, Leon and Dahn, Christina and Nozza, Debora and Wagner, Claudia} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70309"> <dc:contributor>Wagner, Claudia</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Nozza, Debora</dc:creator> <dc:contributor>Assenmacher, Dennis</dc:contributor> <dc:creator>Sen, Indira</dc:creator> <dc:contributor>Yu, Zehui</dc:contributor> <dc:creator>Assenmacher, Dennis</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:title>The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets</dcterms:title> <dc:contributor>Samory, Mattia</dc:contributor> <dc:creator>Fröhling, Leon</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract>Machine learning (ML)-based content moderation tools are essential to keep online spaces free from hateful communication. Yet ML tools can only be as capable as the quality of the data they are trained on allows them. While there is increasing evidence that they underperform in detecting hateful communications directed towards specific identities and may discriminate against them, we know surprisingly little about the provenance of such bias. To fill this gap, we present a systematic review of the datasets for the automated detection of hateful communication introduced over the past decade, and unpack the quality of the datasets in terms of the identities that they embody: those of the targets of hateful communication that the data curators focused on, as well as those unintentionally included in the datasets. We find, overall, a skewed representation of selected target identities and mismatches between the targets that research conceptualizes and ultimately includes in datasets. Yet, by contextualizing these findings in the language and location of origin of the datasets, we highlight a positive trend towards the broadening and diversification of this research space.</dcterms:abstract> <dc:creator>Samory, Mattia</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70309"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Yu, Zehui</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/> <dc:creator>Wagner, Claudia</dc:creator> <dcterms:issued>2024-06-13</dcterms:issued> <dc:contributor>Fröhling, Leon</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-04T08:40:17Z</dcterms:available> <dc:contributor>Nozza, Debora</dc:contributor> <dc:contributor>Sen, Indira</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-04T08:40:17Z</dc:date> <dc:creator>Dahn, Christina</dc:creator> <dc:contributor>Dahn, Christina</dc:contributor> </rdf:Description> </rdf:RDF>