The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2024
Autor:innen
Yu, Zehui
Assenmacher, Dennis
Samory, Mattia
Fröhling, Leon
Dahn, Christina
Nozza, Debora
Wagner, Claudia
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Verfügbar unter: doi: 10.1177/08944393241258771
Zusammenfassung

Machine learning (ML)-based content moderation tools are essential to keep online spaces free from hateful communication. Yet ML tools can only be as capable as the quality of the data they are trained on allows them. While there is increasing evidence that they underperform in detecting hateful communications directed towards specific identities and may discriminate against them, we know surprisingly little about the provenance of such bias. To fill this gap, we present a systematic review of the datasets for the automated detection of hateful communication introduced over the past decade, and unpack the quality of the datasets in terms of the identities that they embody: those of the targets of hateful communication that the data curators focused on, as well as those unintentionally included in the datasets. We find, overall, a skewed representation of selected target identities and mismatches between the targets that research conceptualizes and ultimately includes in datasets. Yet, by contextualizing these findings in the language and location of origin of the datasets, we highlight a positive trend towards the broadening and diversification of this research space.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
data quality, hateful online communication, systematic review, hate targets, multilinguality
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690YU, Zehui, Indira SEN, Dennis ASSENMACHER, Mattia SAMORY, Leon FRÖHLING, Christina DAHN, Debora NOZZA, Claudia WAGNER, 2024. The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets. In: Social Science Computer Review. Sage. ISSN 0894-4393. eISSN 1552-8286. Verfügbar unter: doi: 10.1177/08944393241258771
BibTex
@article{Yu2024-06-13Unsee-70309,
  year={2024},
  doi={10.1177/08944393241258771},
  title={The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets},
  issn={0894-4393},
  journal={Social Science Computer Review},
  author={Yu, Zehui and Sen, Indira and Assenmacher, Dennis and Samory, Mattia and Fröhling, Leon and Dahn, Christina and Nozza, Debora and Wagner, Claudia}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70309">
    <dc:contributor>Wagner, Claudia</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:creator>Nozza, Debora</dc:creator>
    <dc:contributor>Assenmacher, Dennis</dc:contributor>
    <dc:creator>Sen, Indira</dc:creator>
    <dc:contributor>Yu, Zehui</dc:contributor>
    <dc:creator>Assenmacher, Dennis</dc:creator>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:title>The Unseen Targets of Hate : A Systematic Review of Hateful Communication Datasets</dcterms:title>
    <dc:contributor>Samory, Mattia</dc:contributor>
    <dc:creator>Fröhling, Leon</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract>Machine learning (ML)-based content moderation tools are essential to keep online spaces free from hateful communication. Yet ML tools can only be as capable as the quality of the data they are trained on allows them. While there is increasing evidence that they underperform in detecting hateful communications directed towards specific identities and may discriminate against them, we know surprisingly little about the provenance of such bias. To fill this gap, we present a systematic review of the datasets for the automated detection of hateful communication introduced over the past decade, and unpack the quality of the datasets in terms of the identities that they embody: those of the targets of hateful communication that the data curators focused on, as well as those unintentionally included in the datasets. We find, overall, a skewed representation of selected target identities and mismatches between the targets that research conceptualizes and ultimately includes in datasets. Yet, by contextualizing these findings in the language and location of origin of the datasets, we highlight a positive trend towards the broadening and diversification of this research space.</dcterms:abstract>
    <dc:creator>Samory, Mattia</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70309"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Yu, Zehui</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Wagner, Claudia</dc:creator>
    <dcterms:issued>2024-06-13</dcterms:issued>
    <dc:contributor>Fröhling, Leon</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-04T08:40:17Z</dcterms:available>
    <dc:contributor>Nozza, Debora</dc:contributor>
    <dc:contributor>Sen, Indira</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-07-04T08:40:17Z</dc:date>
    <dc:creator>Dahn, Christina</dc:creator>
    <dc:contributor>Dahn, Christina</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Ja
Online First: Zeitschriftenartikel, die schon vor ihrer Zuordnung zu einem bestimmten Zeitschriftenheft (= Issue) online gestellt werden. Online First-Artikel werden auf der Homepage des Journals in der Verlagsfassung veröffentlicht.
Diese Publikation teilen