Combinatorial methods in algebraic geometry

Lade...
Vorschaubild
Dateien
Vodicka_2-75hmrbpjiots3.pdf
Vodicka_2-75hmrbpjiots3.pdfGröße: 1.3 MBDownloads: 23
Datum
2024
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Dissertation
Publikationsstatus
Published
Erschienen in
Zusammenfassung

In this thesis, we study how to use combinatorics to solve problems in algebraic geometry. We succeed in our goal in many different areas. Firstly, we obtain results about normality and Gorenstein property of the varieties associated to phylogenetic group-based models. In particular, we prove a conjecture of Micha\l ek about the normality of the 3-Kimura model and extend results of Buczynska and Wisniewski about the Gorenstein property from the group Z_2 to groups Z_3 and Z_2xZ_2. We also obtain a full classification of graphical matroids whose associated varieties satisfy the Gorenstein property. Moreover, we classify tangential varieties to Segre-Veronese varieties which are Gorenstein or Cohen-Macaulay. Finally, we find formulas for computing the intersection products in the space of complete quadrics. We find the connection between these numbers, the maximum-likelihood degree of general linear concentration models, and the degree of semidefinite programming. These results allow us to prove Nie-Ranestadt-Sturmfels conjecture about the degree of semidefinite programming and also Sturmfels-Uhler conjecture about the polynomiality of maximum-likelihood degree.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690VODICKA, Martin, 2024. Combinatorial methods in algebraic geometry [Dissertation]. Konstanz: University of Konstanz
BibTex
@phdthesis{Vodicka2024Combi-70034,
  year={2024},
  title={Combinatorial methods in algebraic geometry},
  author={Vodicka, Martin},
  address={Konstanz},
  school={Universität Konstanz}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/70034">
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70034/4/Vodicka_2-75hmrbpjiots3.pdf"/>
    <dcterms:issued>2024</dcterms:issued>
    <dc:contributor>Vodicka, Martin</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-31T08:24:06Z</dcterms:available>
    <dcterms:abstract>In this thesis, we study how to use combinatorics to solve problems in algebraic geometry. We succeed in our goal in many different areas. Firstly, we obtain results about normality and Gorenstein property of the varieties associated to phylogenetic group-based models. In particular, we prove a conjecture of Micha\l ek about the normality of the 3-Kimura model and extend results of Buczynska and Wisniewski about the Gorenstein property from the group Z_2 to groups Z_3 and Z_2xZ_2. We also obtain a full classification of graphical matroids whose associated varieties satisfy the Gorenstein property. Moreover, we classify tangential varieties to Segre-Veronese varieties which are Gorenstein or Cohen-Macaulay. Finally, we find formulas for computing the intersection products in the space of complete quadrics. We find the connection between these numbers, the maximum-likelihood degree of general linear concentration models, and the degree of semidefinite programming. These results allow us to prove Nie-Ranestadt-Sturmfels conjecture about the degree of semidefinite programming and also Sturmfels-Uhler conjecture about the polynomiality of maximum-likelihood degree.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/70034/4/Vodicka_2-75hmrbpjiots3.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-31T08:24:06Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:language>eng</dc:language>
    <dcterms:title>Combinatorial methods in algebraic geometry</dcterms:title>
    <dc:creator>Vodicka, Martin</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/70034"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
June 2, 2022
Hochschulschriftenvermerk
Konstanz, Univ., Diss., 2022
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Begutachtet
Diese Publikation teilen