Operationally meaningful representations of physical systems in neural networks

Thumbnail Image
Date
2022
Authors
Poulsen Nautrup, Hendrik
Metger, Tony
Iten, Raban
Jerbi, Sofiene
Trenkwalder, Lea M.
Wilming, Henrik
Renner, Renato
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Machine Learning: Science and Technology ; 3 (2022), 4. - 045025. - IOP Publishing. - eISSN 2632-2153
Abstract
To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.
Summary in another language
Subject (DDC)
100 Philosophy
Keywords
representation learning, neural networks, reinforcement learning, Bloch vector, quantum physics
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690POULSEN NAUTRUP, Hendrik, Tony METGER, Raban ITEN, Sofiene JERBI, Lea M. TRENKWALDER, Henrik WILMING, Hans J. BRIEGEL, Renato RENNER, 2022. Operationally meaningful representations of physical systems in neural networks. In: Machine Learning: Science and Technology. IOP Publishing. 3(4), 045025. eISSN 2632-2153. Available under: doi: 10.1088/2632-2153/ac9ae8
BibTex
@article{PoulsenNautrup2022Opera-59643,
  year={2022},
  doi={10.1088/2632-2153/ac9ae8},
  title={Operationally meaningful representations of physical systems in neural networks},
  number={4},
  volume={3},
  journal={Machine Learning: Science and Technology},
  author={Poulsen Nautrup, Hendrik and Metger, Tony and Iten, Raban and Jerbi, Sofiene and Trenkwalder, Lea M. and Wilming, Henrik and Briegel, Hans J. and Renner, Renato},
  note={Article Number: 045025}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/59643">
    <dc:creator>Renner, Renato</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Iten, Raban</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:creator>Trenkwalder, Lea M.</dc:creator>
    <dc:creator>Jerbi, Sofiene</dc:creator>
    <dc:creator>Briegel, Hans J.</dc:creator>
    <dc:creator>Metger, Tony</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Poulsen Nautrup, Hendrik</dc:contributor>
    <dc:creator>Iten, Raban</dc:creator>
    <dc:creator>Wilming, Henrik</dc:creator>
    <dc:contributor>Renner, Renato</dc:contributor>
    <dc:contributor>Briegel, Hans J.</dc:contributor>
    <dc:contributor>Jerbi, Sofiene</dc:contributor>
    <dc:contributor>Wilming, Henrik</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dc:date>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:contributor>Metger, Tony</dc:contributor>
    <dc:creator>Poulsen Nautrup, Hendrik</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-01-05T11:23:23Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59643"/>
    <dcterms:abstract xml:lang="eng">To make progress in science, we often build abstract representations of physical systems that meaningfully encode information about the systems. Such representations ignore redundant features and treat parameters such as velocity and position separately because they can be useful for making statements about different experimental settings. Here, we capture this notion by formally defining the concept of operationally meaningful representations. We present an autoencoder architecture with attention mechanism that can generate such representations and demonstrate it on examples involving both classical and quantum physics. For instance, our architecture finds a compact representation of an arbitrary two-qubit system that separates local parameters from parameters describing quantum correlations.</dcterms:abstract>
    <dcterms:title>Operationally meaningful representations of physical systems in neural networks</dcterms:title>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/59643/1/Poulsen%20Nautrup_2-uzosr6ugoajk8.PDF"/>
    <dc:contributor>Trenkwalder, Lea M.</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Refereed
Yes