KOPS - The Institutional Repository of the University of Konstanz

Stability of transition semigroups and applications to parabolic equations

Stability of transition semigroups and applications to parabolic equations

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

GERLACH, Moritz, Jochen GLÜCK, Markus KUNZE, 2022. Stability of transition semigroups and applications to parabolic equations. In: Transactions of the American Mathematical Society (TRAN). American Mathematical Society (AMS). ISSN 0002-9947. eISSN 1088-6850. Available under: doi: 10.1090/tran/8620

@article{Gerlach2022Stabi-59154, title={Stability of transition semigroups and applications to parabolic equations}, year={2022}, doi={10.1090/tran/8620}, issn={0002-9947}, journal={Transactions of the American Mathematical Society (TRAN)}, author={Gerlach, Moritz and Glück, Jochen and Kunze, Markus} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/59154"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2022</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-14T14:38:11Z</dc:date> <dc:contributor>Kunze, Markus</dc:contributor> <dcterms:title>Stability of transition semigroups and applications to parabolic equations</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Kunze, Markus</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59154"/> <dc:creator>Glück, Jochen</dc:creator> <dcterms:abstract xml:lang="eng">This paper deals with the long-term behavior of positive operator semigroups on spaces of bounded functions and of signed measures, which have applications to parabolic equations with unbounded coefficients and to stochastic analysis. The main results are a Tauberian type theorem characterizing the convergence to equilibrium of strongly Feller semigroups and a generalization of a classical convergence theorem of Doob. None of these results requires any kind of time regularity of the semigroup.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-14T14:38:11Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Glück, Jochen</dc:contributor> <dc:creator>Gerlach, Moritz</dc:creator> <dc:contributor>Gerlach, Moritz</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account