Image Novelty Detection Based on Mean-Shift and Typical Set Size

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HERMANN, Matthias, Bastian GOLDLÜCKE, Matthias O. FRANZ, 2022. Image Novelty Detection Based on Mean-Shift and Typical Set Size. The International Conference on Image Analysis and Processing, ICIAP 2022. Lecce, Italy, May 23, 2022 - May 27, 2022. In: SCLAROFF, Stan, ed. and others. Image Analysis and Processing - ICIAP 2022 : 21st International Conference, Lecce, Italy, May 23-27, 2022, Proceedings, Part II. Cham:Springer, pp. 755-766. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-031-06429-6. Available under: doi: 10.1007/978-3-031-06430-2_63

@inproceedings{Hermann2022Image-59120, title={Image Novelty Detection Based on Mean-Shift and Typical Set Size}, year={2022}, doi={10.1007/978-3-031-06430-2_63}, number={13232}, isbn={978-3-031-06429-6}, issn={0302-9743}, address={Cham}, publisher={Springer}, series={Lecture Notes in Computer Science}, booktitle={Image Analysis and Processing - ICIAP 2022 : 21st International Conference, Lecce, Italy, May 23-27, 2022, Proceedings, Part II}, pages={755--766}, editor={Sclaroff, Stan}, author={Hermann, Matthias and Goldlücke, Bastian and Franz, Matthias O.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/59120"> <dc:contributor>Hermann, Matthias</dc:contributor> <dcterms:title>Image Novelty Detection Based on Mean-Shift and Typical Set Size</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/59120"/> <dc:creator>Hermann, Matthias</dc:creator> <dc:creator>Franz, Matthias O.</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:39:03Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-11-11T09:39:03Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dcterms:issued>2022</dcterms:issued> <dcterms:abstract xml:lang="eng">The detection of anomalous or novel images given a training dataset of only clean reference data (inliers) is an important task in computer vision. We propose a new shallow approach that represents both inlier and outlier images as ensembles of patches, which allows us to effectively detect novelties as mean shifts between reference data and outliers with the Hotelling T2 test. Since mean-shift can only be detected when the outlier ensemble is sufficiently separate from the typical set of the inlier distribution, this typical set acts as a blind spot for novelty detection. We therefore minimize its estimated size as our selection rule for critical hyperparameters, such as, e.g., the size of the patches is crucial. To showcase the capabilities of our approach, we compare results with classical and deep learning methods on the popular datasets MNIST and CIFAR-10, and demonstrate its real-world applicability in a large-scale industrial inspection scenario.</dcterms:abstract> <dc:contributor>Franz, Matthias O.</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account