A-quasiconvexity and partial regularity
Lade...
Dateien
Datum
2022
Autor:innen
Conti, Sergio
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Calculus of Variations and Partial Differential Equations. Springer. 2022, 61(6), 215. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-022-02326-0
Zusammenfassung
We establish the first partial regularity result for local minima of strongly A-quasiconvex integrals in the case where the differential operator A possesses an elliptic potential A. As the main ingredient, the proof works by reduction to the partial regularity for full gradient functionals. Specialising to particular differential operators, the results in this paper thereby equally yield novel partial regularity theorems in the cases of the trace-free symmetric gradient, the exterior derivative or the div-curl-operator.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
CONTI, Sergio, Franz GMEINEDER, 2022. A-quasiconvexity and partial regularity. In: Calculus of Variations and Partial Differential Equations. Springer. 2022, 61(6), 215. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-022-02326-0BibTex
@article{Conti2022-12Aquas-58930, year={2022}, doi={10.1007/s00526-022-02326-0}, title={A-quasiconvexity and partial regularity}, number={6}, volume={61}, issn={0944-2669}, journal={Calculus of Variations and Partial Differential Equations}, author={Conti, Sergio and Gmeineder, Franz}, note={Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Project 211504053 - SFB 1060 and Project 390685813 - HCM Article Number: 215} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58930"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-27T13:27:51Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58930"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Conti, Sergio</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:creator>Gmeineder, Franz</dc:creator> <dcterms:title>A-quasiconvexity and partial regularity</dcterms:title> <dc:contributor>Conti, Sergio</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58930/1/Conti_2-wmclffmd61sa0.pdf"/> <dcterms:abstract xml:lang="eng">We establish the first partial regularity result for local minima of strongly A-quasiconvex integrals in the case where the differential operator A possesses an elliptic potential A. As the main ingredient, the proof works by reduction to the partial regularity for full gradient functionals. Specialising to particular differential operators, the results in this paper thereby equally yield novel partial regularity theorems in the cases of the trace-free symmetric gradient, the exterior derivative or the div-curl-operator.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58930/1/Conti_2-wmclffmd61sa0.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2022-12</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-27T13:27:51Z</dcterms:available> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) via Project 211504053 - SFB 1060 and Project 390685813 - HCM
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja