A-quasiconvexity and partial regularity
A-quasiconvexity and partial regularity
Date
2022
Authors
Conti, Sergio
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Calculus of Variations and Partial Differential Equations ; 61 (2022), 6. - 215. - Springer. - ISSN 0944-2669. - eISSN 1432-0835
Abstract
We establish the first partial regularity result for local minima of strongly A-quasiconvex integrals in the case where the differential operator A possesses an elliptic potential A. As the main ingredient, the proof works by reduction to the partial regularity for full gradient functionals. Specialising to particular differential operators, the results in this paper thereby equally yield novel partial regularity theorems in the cases of the trace-free symmetric gradient, the exterior derivative or the div-curl-operator.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
CONTI, Sergio, Franz GMEINEDER, 2022. A-quasiconvexity and partial regularity. In: Calculus of Variations and Partial Differential Equations. Springer. 61(6), 215. ISSN 0944-2669. eISSN 1432-0835. Available under: doi: 10.1007/s00526-022-02326-0BibTex
@article{Conti2022-12Aquas-58930, year={2022}, doi={10.1007/s00526-022-02326-0}, title={A-quasiconvexity and partial regularity}, number={6}, volume={61}, issn={0944-2669}, journal={Calculus of Variations and Partial Differential Equations}, author={Conti, Sergio and Gmeineder, Franz}, note={Article Number: 215} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58930"> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-27T13:27:51Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58930"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Conti, Sergio</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gmeineder, Franz</dc:contributor> <dc:creator>Gmeineder, Franz</dc:creator> <dcterms:title>A-quasiconvexity and partial regularity</dcterms:title> <dc:contributor>Conti, Sergio</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58930/1/Conti_2-wmclffmd61sa0.pdf"/> <dcterms:abstract xml:lang="eng">We establish the first partial regularity result for local minima of strongly A-quasiconvex integrals in the case where the differential operator A possesses an elliptic potential A. As the main ingredient, the proof works by reduction to the partial regularity for full gradient functionals. Specialising to particular differential operators, the results in this paper thereby equally yield novel partial regularity theorems in the cases of the trace-free symmetric gradient, the exterior derivative or the div-curl-operator.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58930/1/Conti_2-wmclffmd61sa0.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2022-12</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-27T13:27:51Z</dcterms:available> <dc:language>eng</dc:language> <dc:rights>Attribution 4.0 International</dc:rights> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes