Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway

Lade...
Vorschaubild
Dateien
Bouhadjar_2-1tjmmji81ylqr1.pdf
Bouhadjar_2-1tjmmji81ylqr1.pdfGröße: 1.03 MBDownloads: 272
Datum
2022
Autor:innen
Bouhadjar, Younes
Payvand, Melika
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Bookpart
Sammlungen
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BUNDY, Alan, ed., Denis MARESCHAL, ed.. Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022). Aachen: CEUR, 2022, pp. 46-52. CEUR Workshop Proceedings. 3227. eISSN 1613-0073
Zusammenfassung

In this paper, we support the relevance of the collaboration and mutual inspiration between research in Artificial Intelligence and neuroscience to create truly intelligent and efficient systems. In contrast to the traditional top-down and bottom-up strategies designed to study and emulate the brain, we propose an alternative approach where these two strategies are met halfway, defining a set of algorithmic principles. We present prediction as a core algorithmic principle and advocate for applying the same approach to identify other neural principles which can constitute core mechanisms of new Machine Learning frameworks.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Prediction, interdisciplinary, bottom-up, top-down
Konferenz
International Joint Conference on Learning & Reasoning 2022, 28. Sept. 2022 - 30. Sept. 2022, Windsor, UK
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BOUHADJAR, Younes, Caterina MORUZZI, Melika PAYVAND, 2022. Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway. International Joint Conference on Learning & Reasoning 2022. Windsor, UK, 28. Sept. 2022 - 30. Sept. 2022. In: BUNDY, Alan, ed., Denis MARESCHAL, ed.. Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022). Aachen: CEUR, 2022, pp. 46-52. CEUR Workshop Proceedings. 3227. eISSN 1613-0073
BibTex
@inproceedings{Bouhadjar2022Predi-58788,
  year={2022},
  title={Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway},
  url={http://ceur-ws.org/Vol-3227/},
  number={3227},
  publisher={CEUR},
  address={Aachen},
  series={CEUR Workshop Proceedings},
  booktitle={Proceedings of the 3rd Human-Like Computing Workshop (HLC 2022) co-located with the 2nd International Joint Conference on Learning and Reasoning (IJCLR 2022)},
  pages={46--52},
  editor={Bundy, Alan and Mareschal, Denis},
  author={Bouhadjar, Younes and Moruzzi, Caterina and Payvand, Melika}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58788">
    <dc:contributor>Bouhadjar, Younes</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-11T08:38:20Z</dc:date>
    <dc:language>eng</dc:language>
    <dc:creator>Bouhadjar, Younes</dc:creator>
    <dc:contributor>Moruzzi, Caterina</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58788/1/Bouhadjar_2-1tjmmji81ylqr1.pdf"/>
    <dc:creator>Moruzzi, Caterina</dc:creator>
    <dc:rights>terms-of-use</dc:rights>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dc:creator>Payvand, Melika</dc:creator>
    <dcterms:abstract xml:lang="eng">In this paper, we support the relevance of the collaboration and mutual inspiration between research in Artificial Intelligence and neuroscience to create truly intelligent and efficient systems. In contrast to the traditional top-down and bottom-up strategies designed to study and emulate the brain, we propose an alternative approach where these two strategies are met halfway, defining a set of algorithmic principles. We present prediction as a core algorithmic principle and advocate for applying the same approach to identify other neural principles which can constitute core mechanisms of new Machine Learning frameworks.</dcterms:abstract>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-11T08:38:20Z</dcterms:available>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58788"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/>
    <dcterms:title>Prediction : An Algorithmic Principle Meeting Neuroscience and Machine Learning Halfway</dcterms:title>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58788/1/Bouhadjar_2-1tjmmji81ylqr1.pdf"/>
    <dc:contributor>Payvand, Melika</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
2022-10-11
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen