KOPS - The Institutional Repository of the University of Konstanz

A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist

A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist

Cite This

Files in this item

Checksum: MD5:1f5fc66b5dd22bed0639e1e4d7168fc3

HARTMANN, Maximilian C., Moritz SCHOTT, Alishiba DSOUZA, Yannick METZ, Michele VOLPI, Ross S. PURVES, 2022. A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist. In: Ecological Informatics. Elsevier. 71, 101782. ISSN 1574-9541. eISSN 1878-0512. Available under: doi: 10.1016/j.ecoinf.2022.101782

@article{Hartmann2022-11image-58730, title={A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist}, year={2022}, doi={10.1016/j.ecoinf.2022.101782}, volume={71}, issn={1574-9541}, journal={Ecological Informatics}, author={Hartmann, Maximilian C. and Schott, Moritz and Dsouza, Alishiba and Metz, Yannick and Volpi, Michele and Purves, Ross S.}, note={Article Number: 101782} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58730"> <dc:contributor>Schott, Moritz</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58730/1/Hartmann_2-cwktbfl63z5p4.pdf"/> <dcterms:title>A text and image analysis workflow using citizen science data to extract relevant social media records : Combining red kite observations from Flickr, eBird and iNaturalist</dcterms:title> <dc:creator>Dsouza, Alishiba</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58730"/> <dc:creator>Schott, Moritz</dc:creator> <dc:creator>Hartmann, Maximilian C.</dc:creator> <dc:contributor>Dsouza, Alishiba</dc:contributor> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-05T07:18:58Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:issued>2022-11</dcterms:issued> <dc:creator>Metz, Yannick</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-10-05T07:18:58Z</dcterms:available> <dcterms:abstract xml:lang="eng">There is an urgent need to develop new methods to monitor the state of the environment. One potential approach is to use new data sources, such as User-Generated Content, to augment existing approaches. However, to date, studies typically focus on a single date source and modality. We take a new approach, using citizen science records recording sightings of red kites (Milvus milvus) to train and validate a Convolutional Neural Network (CNN) capable of identifying images containing red kites. This CNN is integrated in a sequential workflow which also uses an off-the-shelf bird classifier and text metadata to retrieve observations of red kites in the Chilterns, England. Our workflow reduces an initial set of more than 600,000 images to just 3065 candidate images. Manual inspection of these images shows that our approach has a precision of 0.658. A workflow using only text identifies 14% less images than that including image content analysis, and by combining image and text classifiers we achieve almost perfect precision of 0.992. Images retrieved from social media records complement those recorded by citizen scientists spatially and temporally, and our workflow is sufficiently generic that it can easily be transferred to other species.</dcterms:abstract> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Metz, Yannick</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Purves, Ross S.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58730/1/Hartmann_2-cwktbfl63z5p4.pdf"/> <dc:creator>Volpi, Michele</dc:creator> <dc:contributor>Volpi, Michele</dc:contributor> <dc:creator>Purves, Ross S.</dc:creator> <dc:contributor>Hartmann, Maximilian C.</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Oct 5, 2022 (Information about access statistics)

Hartmann_2-cwktbfl63z5p4.pdf 46

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account