CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY
CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY
No Thumbnail Available
Files
There are no files associated with this item.
Date
2022
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
The Journal of Symbolic Logic ; 87 (2022), 3. - pp. 1243-1259. - Cambridge University Press on behalf of the Association for Symbolic Logic. - ISSN 0022-4812. - eISSN 1943-5886
Abstract
We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on (R, <) have the property, as do all expansions of (R, +, ·, N). Our main analytic-geometric result is that any such expansion of (R, <, +) by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of (N, +, ·). We also show that any given expansion of (R, <, +, N) by subsets of Nn (n allowed to vary) has the property if and only if it defines all arithmetic sets. Variations arise by considering connected components or quasicomponents instead of path components.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DOLICH, Alfred, Chris MILLER, Alex SAVATOVSKY, Athipat THAMRONGTHANYALAK, 2022. CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY. In: The Journal of Symbolic Logic. Cambridge University Press on behalf of the Association for Symbolic Logic. 87(3), pp. 1243-1259. ISSN 0022-4812. eISSN 1943-5886. Available under: doi: 10.1017/jsl.2022.16BibTex
@article{Dolich2022CONNE-58617, year={2022}, doi={10.1017/jsl.2022.16}, title={CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY}, number={3}, volume={87}, issn={0022-4812}, journal={The Journal of Symbolic Logic}, pages={1243--1259}, author={Dolich, Alfred and Miller, Chris and Savatovsky, Alex and Thamrongthanyalak, Athipat} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58617"> <dc:contributor>Miller, Chris</dc:contributor> <dc:creator>Miller, Chris</dc:creator> <dc:contributor>Thamrongthanyalak, Athipat</dc:contributor> <dc:creator>Dolich, Alfred</dc:creator> <dcterms:issued>2022</dcterms:issued> <dcterms:abstract xml:lang="eng">We initiate an investigation of structures on the set of real numbers having the property that path components of definable sets are definable. All o-minimal structures on (R, <) have the property, as do all expansions of (R, +, ·, N). Our main analytic-geometric result is that any such expansion of (R, <, +) by Boolean combinations of open sets (of any arities) either is o-minimal or defines an isomorph of (N, +, ·). We also show that any given expansion of (R, <, +, N) by subsets of N<sup>n</sup> (n allowed to vary) has the property if and only if it defines all arithmetic sets. Variations arise by considering connected components or quasicomponents instead of path components.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58617"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>CONNECTEDNESS IN STRUCTURES ON THE REAL NUMBERS: O-MINIMALITY AND UNDECIDABILITY</dcterms:title> <dc:contributor>Dolich, Alfred</dc:contributor> <dc:language>eng</dc:language> <dc:contributor>Savatovsky, Alex</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-14T09:31:40Z</dcterms:available> <dc:creator>Thamrongthanyalak, Athipat</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-14T09:31:40Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Savatovsky, Alex</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Yes