A numerical investigation of Brockett’s ensemble optimal control problems

Lade...
Vorschaubild
Dateien
Bartsch_2-j1o4hh0j0m9z8.pdf
Bartsch_2-j1o4hh0j0m9z8.pdfGröße: 953.43 KBDownloads: 56
Datum
2021
Autor:innen
Borzì, Alfio
Fanelli, Francesco
Roy, Souvik
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Numerische Mathematik. Springer. 2021, 149(1), pp. 1-42. ISSN 0029-599X. eISSN 0945-3245. Available under: doi: 10.1007/s00211-021-01223-6
Zusammenfassung

This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690BARTSCH, Jan, Alfio BORZÌ, Francesco FANELLI, Souvik ROY, 2021. A numerical investigation of Brockett’s ensemble optimal control problems. In: Numerische Mathematik. Springer. 2021, 149(1), pp. 1-42. ISSN 0029-599X. eISSN 0945-3245. Available under: doi: 10.1007/s00211-021-01223-6
BibTex
@article{Bartsch2021numer-58557,
  year={2021},
  doi={10.1007/s00211-021-01223-6},
  title={A numerical investigation of Brockett’s ensemble optimal control problems},
  number={1},
  volume={149},
  issn={0029-599X},
  journal={Numerische Mathematik},
  pages={1--42},
  author={Bartsch, Jan and Borzì, Alfio and Fanelli, Francesco and Roy, Souvik}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58557">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/>
    <dc:creator>Borzì, Alfio</dc:creator>
    <dc:creator>Roy, Souvik</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58557"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dcterms:available>
    <dc:contributor>Fanelli, Francesco</dc:contributor>
    <dc:creator>Bartsch, Jan</dc:creator>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dcterms:issued>2021</dcterms:issued>
    <dcterms:title>A numerical investigation of Brockett’s ensemble optimal control problems</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/>
    <dc:contributor>Borzì, Alfio</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dc:date>
    <dc:contributor>Bartsch, Jan</dc:contributor>
    <dc:contributor>Roy, Souvik</dc:contributor>
    <dc:creator>Fanelli, Francesco</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen