A numerical investigation of Brockett’s ensemble optimal control problems
A numerical investigation of Brockett’s ensemble optimal control problems
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Numerische Mathematik ; 149 (2021), 1. - pp. 1-42. - Springer. - ISSN 0029-599X. - eISSN 0945-3245
Abstract
This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BARTSCH, Jan, Alfio BORZÌ, Francesco FANELLI, Souvik ROY, 2021. A numerical investigation of Brockett’s ensemble optimal control problems. In: Numerische Mathematik. Springer. 149(1), pp. 1-42. ISSN 0029-599X. eISSN 0945-3245. Available under: doi: 10.1007/s00211-021-01223-6BibTex
@article{Bartsch2021numer-58557, year={2021}, doi={10.1007/s00211-021-01223-6}, title={A numerical investigation of Brockett’s ensemble optimal control problems}, number={1}, volume={149}, issn={0029-599X}, journal={Numerische Mathematik}, pages={1--42}, author={Bartsch, Jan and Borzì, Alfio and Fanelli, Francesco and Roy, Souvik} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58557"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/> <dc:creator>Borzì, Alfio</dc:creator> <dc:creator>Roy, Souvik</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58557"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dcterms:available> <dc:contributor>Fanelli, Francesco</dc:contributor> <dc:creator>Bartsch, Jan</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:issued>2021</dcterms:issued> <dcterms:title>A numerical investigation of Brockett’s ensemble optimal control problems</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58557/1/Bartsch_2-j1o4hh0j0m9z8.pdf"/> <dc:contributor>Borzì, Alfio</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-09-08T10:25:46Z</dc:date> <dc:contributor>Bartsch, Jan</dc:contributor> <dc:contributor>Roy, Souvik</dc:contributor> <dc:creator>Fanelli, Francesco</dc:creator> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes