Many Faces of Symmetric Edge Polytopes
Many Faces of Symmetric Edge Polytopes
Date
2022
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
The Electronic Journal of Combinatorics ; 29 (2022), 3. - P3.24. - Herbert S. Wilf. - ISSN 1097-1440. - eISSN 1077-8926
Abstract
Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
D'ALÌ, Alessio, Emanuele DELUCCHI, Mateusz MICHALEK, 2022. Many Faces of Symmetric Edge Polytopes. In: The Electronic Journal of Combinatorics. Herbert S. Wilf. 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387BibTex
@article{DAli2022Faces-58344, year={2022}, doi={10.37236/10387}, title={Many Faces of Symmetric Edge Polytopes}, number={3}, volume={29}, issn={1097-1440}, journal={The Electronic Journal of Combinatorics}, author={D'Alì, Alessio and Delucchi, Emanuele and Michalek, Mateusz}, note={Article Number: P3.24} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58344"> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2022</dcterms:issued> <dc:contributor>D'Alì, Alessio</dc:contributor> <dc:creator>D'Alì, Alessio</dc:creator> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dc:date> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58344"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/> <dc:creator>Delucchi, Emanuele</dc:creator> <dc:contributor>Delucchi, Emanuele</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:title>Many Faces of Symmetric Edge Polytopes</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dcterms:available> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:creator>Michalek, Mateusz</dc:creator> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes