Many Faces of Symmetric Edge Polytopes

Lade...
Vorschaubild
Dateien
D'Ali_2-nasw3w7ear1k9.PDF
D'Ali_2-nasw3w7ear1k9.PDFGröße: 1.13 MBDownloads: 49
Datum
2022
Autor:innen
D'Alì, Alessio
Delucchi, Emanuele
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Gold
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
The Electronic Journal of Combinatorics. Herbert S. Wilf. 2022, 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387
Zusammenfassung

Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690D'ALÌ, Alessio, Emanuele DELUCCHI, Mateusz MICHALEK, 2022. Many Faces of Symmetric Edge Polytopes. In: The Electronic Journal of Combinatorics. Herbert S. Wilf. 2022, 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387
BibTex
@article{DAli2022Faces-58344,
  year={2022},
  doi={10.37236/10387},
  title={Many Faces of Symmetric Edge Polytopes},
  number={3},
  volume={29},
  issn={1097-1440},
  journal={The Electronic Journal of Combinatorics},
  author={D'Alì, Alessio and Delucchi, Emanuele and Michalek, Mateusz},
  note={Article Number: P3.24}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/58344">
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>D'Alì, Alessio</dc:contributor>
    <dc:creator>D'Alì, Alessio</dc:creator>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.</dcterms:abstract>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dc:date>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58344"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/>
    <dc:creator>Delucchi, Emanuele</dc:creator>
    <dc:contributor>Delucchi, Emanuele</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58344/1/D%27Ali_2-nasw3w7ear1k9.PDF"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:title>Many Faces of Symmetric Edge Polytopes</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-19T09:42:50Z</dcterms:available>
    <dc:contributor>Michalek, Mateusz</dc:contributor>
    <dc:creator>Michalek, Mateusz</dc:creator>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen