Random attractors via pathwise mild solutions for stochastic parabolic evolution equations
Lade...
Dateien
Datum
2021
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
Journal of Evolution Equations. Springer. 2021, 21(2), pp. 2631-2663. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-021-00699-x
Zusammenfassung
We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Stochastic parabolic evolution equations, Pathwise mild solution, Random attractors, Fractal dimension
Konferenz
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690
KUEHN, Christian, Alexandra BLESSING-NEAMTU, Stefanie SONNER, 2021. Random attractors via pathwise mild solutions for stochastic parabolic evolution equations. In: Journal of Evolution Equations. Springer. 2021, 21(2), pp. 2631-2663. ISSN 1424-3199. eISSN 1424-3202. Available under: doi: 10.1007/s00028-021-00699-xBibTex
@article{Kuehn2021-06Rando-57999, year={2021}, doi={10.1007/s00028-021-00699-x}, title={Random attractors via pathwise mild solutions for stochastic parabolic evolution equations}, number={2}, volume={21}, issn={1424-3199}, journal={Journal of Evolution Equations}, pages={2631--2663}, author={Kuehn, Christian and Blessing-Neamtu, Alexandra and Sonner, Stefanie} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57999"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-11T10:20:39Z</dcterms:available> <dcterms:title>Random attractors via pathwise mild solutions for stochastic parabolic evolution equations</dcterms:title> <dc:creator>Sonner, Stefanie</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Kuehn, Christian</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57999/1/Kuehn_2-s67e3p6io96l7.pdf"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We investigate the longtime behavior of stochastic partial differential equations (SPDEs) with differential operators that depend on time and the underlying probability space. In particular, we consider stochastic parabolic evolution problems in Banach spaces with additive noise and prove the existence of random exponential attractors. These are compact random sets of finite fractal dimension that contain the global random attractor and are attracting at an exponential rate. In order to apply the framework of random dynamical systems, we use the concept of pathwise mild solutions.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57999"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-11T10:20:39Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:contributor>Blessing-Neamtu, Alexandra</dc:contributor> <dcterms:issued>2021-06</dcterms:issued> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57999/1/Kuehn_2-s67e3p6io96l7.pdf"/> <dc:contributor>Sonner, Stefanie</dc:contributor> <dc:creator>Blessing-Neamtu, Alexandra</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Kuehn, Christian</dc:contributor> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja